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Are high-temperature superconductors in the dirty limit?
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A scaling relation ρs ∝ σdc Tc has been observed in the copper-oxide superconductors, where ρs

is the strength of the superconducting condensate, Tc is the critical temperature, and σdc is the
normal-state dc conductivity close to Tc. This scaling relation is examined within the context of a
clean and dirty-limit BCS superconductor. These limits are well established for an isotropic BCS
gap 2∆ and a normal-state scattering rate 1/τ ; in the clean limit 1/τ ≪ 2∆, and in the dirty limit
1/τ > 2∆. The dirty limit may also be defined operationally as the regime where ρs varies with 1/τ .
It is shown that the scaling relation ρs ∝ σdc Tc is the hallmark of a BCS system in the dirty-limit.
While the gap in the copper-oxide superconductors is considered to be d-wave with nodes and a gap
maximum ∆0, if 1/τ > 2∆0 then the dirty-limit case is preserved. The scaling relation implies that
the copper-oxide superconductors are likely to be in the dirty limit, and that as a result the energy
scale associated with the formation of the condensate is scaling linearly with Tc.

PACS numbers: 74.25.Gz, 74.25.-q, 74.72.-h, 72.15.Lh

Introduction. Scaling laws express a systematic and
universal simplicity among complex systems in nature.
For example, such laws are of enormous significance in
biology, where the scaling relation between body mass
and metabolic rate spans 21 orders of magnitude.1,2 Scal-
ing relations are equally important in the physical sci-
ences. Since the discovery of superconductivity at ele-
vated temperatures in copper-oxide materials3 there has
been considerable effort to find trends and correlations
between the physical quantities, as a clue to the ori-
gin of the superconductivity.4 One of the earliest pat-
terns that emerged was the linear scaling of the super-
fluid density ρs (∝ 1/λ2, where λ is the superconduct-
ing penetration depth) in the copper-oxygen planes of
the hole-doped materials with the superconducting tran-
sition temperature Tc. This is referred to as the Ue-
mura relation,5,6 and it works reasonably well for the
underdoped materials. However, it does not describe
very underdoped,7 optimally doped (i.e., Tc is a max-
imum), overdoped,8,9 or electron-doped materials.10 A
similar attempt to scale ρs with the dc conductivity σdc

was only partially successful.11 We have recently demon-
strated that the scaling relation ρs ∝ σdc Tc may be ap-
plied to a large number of high-temperature supercon-
ductors, regardless of doping level or type, nature of dis-
order, crystal structure, or direction (parallel or perpen-
dicular to the copper-oxygen planes).12 The optical val-
ues of ρs(T ≪ Tc) and σdc(T >

∼ Tc) have been determined
for a large number of copper-oxide superconductors, as
well as the bismuth-oxide material Ba1−xKxBiO3; the
results are shown as a log-log plot in Fig. 1 and indi-
cate that within error the points may be described by
the relation ρs ∝ 35 σdc Tc. In addition, the elemental
BCS superconductors Nb and Pb (without any special
regards to preparation) are also observed to follow this
scaling relation reasonably well.

The values for σdc and ρs have been obtained almost
exclusively from reflectance measurements from which
the complex optical properties have been determined.

The dc conductivity has been extrapolated from the real
part of the optical conductivity σdc = σ1(ω → 0) at
T >

∼ Tc. For T ≪ Tc, the response of the dielec-
tric function to the formation of a condensate is ex-
pressed purely by the real part of the dielectric func-
tion ǫ1(ω) = ǫ∞ − ω2

ps/ω2, which allows the strength of

the condensate to be calculated from ω2
ps = −ω2ǫ1(ω)

in the ω → 0 limit. Here, ω2
ps = 4πnse

2/m∗ is the
square of the superconducting plasma frequency and
ρs ≡ ω2

ps. The strength of the condensate may also be
estimated by tracking the changes in the spectral weight
above and below Tc, where the spectral weight is de-
fined as13 N(ω, T ) = (120/π)

∫ ω

0+ σ1(ω
′, T ) dω′. The con-

densate may be calculated from the shift in the spec-
tral weight ρs = Nn − Ns, where Nn = N(ω, T ≃ Tc),
and Ns = Ns(ω, T ≪ Tc). This is the Ferrell-Glover-
Tinkham sum rule which tracks changes in the optical
conductivity σ1(ω) above and below Tc due to the for-
mation of a condensate at zero frequency.14,15

A deeper understanding of the scaling relation as it
relates to both the elemental superconductors and the
copper-oxide materials may be obtained from an exami-
nation of the spectral weight above and below Tc in re-
lation to the normal-state scattering rate. When Nb is
in the dirty limit, it follows the ρs ∝ σdc Tc relation,
but in the clean limit there is a deviation from this lin-
ear behavior. (This result will be explored in more de-
tail shortly.) The terms “clean” and “dirty” originate
from the comparison of the isotropic BCS energy gap
2∆ with the normal-state scattering rate 1/τ ; the clean
limit is taken as 1/τ ≪ 2∆, while the dirty limit is
1/τ > 2∆. The clean and dirty limits may also be ex-
pressed as l ≫ ξ0 and l < ξ0, respectively, where l is the
quasiparticle mean-free path and ξ0 is the BCS coherence
length; because l ∝ τ and ξ0 ∝ 1/∆, this is equivalent
to the previous statement.29 The use of these defintions
depends on having accurate values for 1/τ and ∆. In
general, BCS superconductors have relatively low values
for Tc, thus 1/τ is assumed to have little temperature de-
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FIG. 1: The log-log plot of the superfluid density ρs

vs σdc Tc for the a-b planes of the hole-doped copper-
oxide superconductors for pure and Pr-doped YBa2Cu3O6+x

(Refs. 11,16,17,18,19); YBa2Cu4O8 (Ref. 17); pure and
Y/Pb-doped Bi2Sr2CaCu2O8+δ (Refs. 19,20); underdoped
La2−xSrxCuO4 (Ref. 21); Tl2Ba2CuO6+δ (Ref. 22); electron-
doped (Nd,Pr)2−xCexCuO4 (Refs. 23,24,25) and the bismate
material Bi1−xKxBiO3 (Ref. 26). Within error, all the points
may be described by a single (dashed) line. The points for
Nb and Pb, indicated by the atomic symbols, also fall close
to this line (Refs. 27,28).

pendence close to the superconducting transition. This
assumption may be tested by suppressing Tc through the
application of a magnetic field in excess of the upper crit-
ical field (Hc2) and examining the transport properties,
which typically reveal little temperature dependence in
1/τ below the zero-field value of Tc. The application of
the the clean and dirty-limit picture to the copper-oxide
superconductors is complicated by both the high critical
temperature, and the superconducting energy gap which
is thought to be d-wave in nature and momentum depen-
dent (∆k), containing nodes.30,31 The high value for Tc

suggests that 1/τ may still have a significant temperature
dependence close to Tc. Indeed, below Tc the quasiparti-
cle scattering rate in the cuprates is observed to decrease
by nearly two orders of magnitude at low temperature.32

This rapid decrease in 1/τ is also observed optically, but
not to the same extent.33 A gap with dx2

−y2 symmetry
may be written as ∆k = ∆0 [cos(kxa) − cos(kya)], where
∆0 is the gap maximum. The fact that the scattering rate
of the quasiparticles restricted to the nodal regions of the
Fermi surface for T ≪ Tc is quite small has been taken as
evidence that these materials are in the clean limit.34,35,36

While it is certainly true that for T ≪ Tc the scattering
rate is small and the nodal quasiparticles have very long
mean-free paths, it is problematic to assert that the su-

perconductor is therefore in the clean limit. In a normal
BCS superconductor 1/τ is also observed to decrease dra-
matically below Tc, regardless of the normal-state value
of 1/τ , due to the formation of a condensate.37. Thus,
the criteria of a small value of the quasiparticle scattering
rate for T ≪ Tc is not a good measure of whether or not
the superconductivity is in the clean or dirty limit. As
with BCS materials, it is desirable to suppress Tc in the
copper-oxide materials through the application of a mag-
netic field to determine the low-temperature behavior of
1/τ . While Hc2 is quite large in the cuprates, experi-
ments using pulsed magnetic fields can suppress Tc; in
these experiments the resistivity of the optimally-doped
materials matches the zero-field values at high temper-
atures due to the low magnetoresistance of these mate-
rials, and the trend of slowly decreasing resistivity con-
tinues smoothly to low temperatures,38,39,40,41,42 often
saturating at a value close to that observed at Tc. The
implication of these experiments is that the normal-state
value of 1/τ is a good measure of the scattering rate in
those systems in which Tc has been suppressed, and is
therefore the value that should be considered when de-
termining whether a system is in the clean or dirty limit.
In addition to this explicit approach, a simpler method
is to adopt an operational definition which states that
if ρs changes with respect to the normal-state value of
1/τ then the material is in the dirty limit; when ρs is
no longer sensitive to the value of 1/τ then the mate-
rial is in the clean limit. Most of the materials in Fig. 1
are studied as a function of carrier doping, but it is also
important to note that the introduction of disorder for
fixed doping levels has also been studied.16 The fact that
all the observed results follow this linear scaling relation
strongly suggests that the copper-oxide superconductors
are close to or in the dirty limit (i.e., the superfluid den-
sity changes in response to variations in 1/τ).

Clean limit. The BCS model is used to describe
the superconductivity of simple metals and alloys. If
the normal-state properties may be described by the
simple Drude model where the complex dielectric func-
tion is written as ǫ̃(ω) = ǫ∞ − ω2

p/[ω(ω + iγ)], where

ω2
p = 4πne2/m∗ is the classical plasma frequency with

the free-carrier concentration n and effective mass m∗,
γ = 1/τ is the scattering rate, and ǫ∞ is a high-frequency
contribution. The dielectric function and the conduc-
tivity are related through σ̃ = σ1 + iσ2 = −iωǫ̃/4π,
thus the frequency-dependent conductivity has the form
σ1(ω) = σdc/(1 + ω2τ2) and σdc = ω2

pτ/4π, which has
the shape of a Lorentzian centered at zero frequency
with a width at half-maximum given by 1/τ . The op-
tical conductivity below Tc has been calculated from an
isotropic (s-wave) energy gap 2∆ that considers an ar-
bitrary purity level.43 The clean limit case (1/τ ≪ 2∆)
is illustrated in Fig. 2 for the choice 1/τ = 0.2∆. An
aspect of clean-limit systems is that nearly all of the
spectral weight associated with the condensate lies below
2∆. As a result, the normalized spectral weight of the
condensate44 (Nn − Ns)/ρs shown in the inset of Fig. 2
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FIG. 2: The optical conductivity for the BCS model in
the normal and superconducting states for a material in the
clean limit (1/τ ≪ 2∆). The normal-state conductivity is
a Lorentzian centered at zero frequency with a full width at
half maximum of 1/τ for T ≃ Tc (solid line); the conduc-
tivity for T ≪ Tc is only faintly visible (dashed line). The
spectral weight associated with the formation of a supercon-
ducting condensate is indicated by the hatched area. Inset:
Nn = N(ω, T ≃ Tc) (solid line), Ns = N(ω, T ≪ Tc)/ρs

(dashed line), and difference between the two (long-dashed
line), normalized with respect to ρs; (Nn − Ns)/ρs converges
rapidly to unity, and is fully formed at energies comparable
to 1/τ .

approaches unity at frequencies closer to 1/τ rather than
2∆. The spectral weight for the condensate (the dif-
ference in the area under the two curves, indicated by
the hatched region) may be estimated as ρs ≃ σdc/τ . If
1/τ ∝ Tc for T ≃ Tc in the copper-oxide materials,45

then ρs ∝ σdc Tc, in agreement with the observed scaling
relation. It is interesting to note that 1/τ ∝ Tc yields
rather large values for the normal-state scattering rate,
and it has been suggested that the copper-oxide materi-
als are close to the maximum level of dissipation allowed
for these systems.46 Furthermore, even though a d-wave
system complicates the interpretation of the clean and
dirty limit, large normal-state values of 1/τ and relatively
short normal-state mean-free paths47 are problematic for
a clean-limit picture; to achieve the clean limit it is not
only necessary that 1/τ ≪ 2∆0, but also that 1/τ <

∼ 2∆k

in the nodal regions. In fact, the clean-limit requirement
is much more stringent for a d-wave system than it is
for a material with an isotropic energy gap, and it is not
clear that it will ever be satisfied in the copper-oxide su-
perconductors. This suggests that a dirty-limit view may
be more appropriate.

Dirty limit. In the BCS dirty limit, 1/τ > 2∆; this

FIG. 3: The optical conductivity for the BCS model in
the normal (solid line) and superconducting states (dashed
line) for a material in the dirty limit (1/τ > 2∆). The
spectral weight associated with the formation of a supercon-
ducting condensate is indicated by the hatched area. Inset:
Nn = N(ω, T ≃ Tc) (solid line), Ns = N(ω, T ≪ Tc) (short
dashed line), and difference between the two (long dashed
line), normalized with respect to ρs; (Nn − Ns)/ρs converges
to unity at energies comprable to 2∆.

is illustrated in Fig. 3 for 1/τ = 10∆. In this case the
normal-state conductivity is a broadened Lorentzian, and
much of the spectral weight has been pushed out above
2∆. As a result, the normalized spectral weight of the
condensate, shown in the inset, converges much more
slowly than in the clean-limit case. However, a majority
of the spectral weight is captured by 2∆ and ρs is almost
fully formed above 4∆ (Ref. 44). In the dirty-limit case,
the spectral weight of the condensate (the hatched area
in Fig. 3) may be estimated as ρs ≃ σdc 2∆. In the BCS
model, the energy gap 2∆ scales linearly with Tc, yield-
ing ρs ∝ σdc Tc, which is in agreement with the observed
scaling relation. As in the clean-limit case, the nature of
the gap is important. However, if 1/τ > 2∆0, the spirit
of the dirty-limit case is preserved for all ∆k. While
many of the points in Fig. 1 are doping-dependent stud-
ies and do not track systematic changes in 1/τ , some of
these points are for the same chemical doping with dif-
ferent scattering rates resulting from disorder that has
either been deliberately introduced,16 or that exist sim-
ply as a byproduct of synthesis.48,49 The observation that
all the points obey a linear scaling relation satisfies the
operational definition of the dirty limit, suggesting that
the examined materials are either close to or in the dirty
limit.

It was noted in Fig. 1 that the points for Nb and Pb
agreed reasonably well with the scaling relation used to
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FIG. 4: The log-log plot of the predicted behavior from the
BCS model of the strength of the condensate for Nb for a wide
range of scattering rates 1/τ = 0.05∆ → 50∆, and assuming
a plasma frequency ωp = 56 000 cm−1, critical temperature
Tc = 9.2 K and an energy gap of 2∆ = 3.5 kB Tc (solid line).
The dashed line indicates 1/τ = 2∆. To the right of this
line the material approaches the clean limit with a residual
resistance ratio (RRR) of >

∼
100; the right arrow indicates

that for larger RRR’s, σdc close to Tc increases, but ρs has
saturated to ω2

p (the data point for Nb in this regime is from
Ref. 50). As the scattering rate increases, the strength of the
condensate adopts a linear scaling behavior (dotted line); the
two points for Nb (Refs. 27,28) shown in Fig. 1 lie close to this
line, indicating that they are in the dirty limit. The scaling
relation shown in Fig. 1 (dash-dot line) is slightly offset from
the BCS dirty-limit result.

describe the copper-oxide superconductors. It is impor-
tant to determine if these values represent clean or dirty-
limit results. The expected behavior of Nb has been mod-
eled using the BCS model43 with a critical temperature
of Tc = 9.2 K and a gap of 2∆ = 22.3 cm−1 (the BCS
weak-coupling limit 2∆ = 3.5 kB Tc). The normal-state is
described using the Drude model with a classical plasma
frequency of ωp = 56 000 cm−1 (Ref. 51) and a range of
scattering rates 1/τ = 0.05∆ → 50∆; from the Drude
model the dc conductivity is σdc = ω2

p τ/60 (in units of

Ω−1cm−1 when the plasma frequency and the scatter-
ing rate have units of cm−1). The spectral weight of
the condensate ρs = Nn − Ns has been determined by
integrating to ω ≃ 200∆, where ρs is observed to con-
verge for all the values of 1/τ examined. The result of
this calculation is shown as the solid line in Fig. 4, and
the dashed line indicates where 1/τ = 2∆. The point
to the right of the dashed line is for Nb recrystallized in
ultra-high vacuum50 to achieve clean-limit conditions in
which the residual resistivity ratios (ρRT/ρT>

∼
Tc

) are in

excess of 100, and where ρs → ω2
p for T ≪ Tc. As the

scattering rate increases and the material becomes pro-
gressively more “dirty”, the strength of the condensate
begins to decrease until it adopts the linear scaling be-
havior ρs ≃ 60 σdc Tc observed in Fig. 4. (It should be
noted that the BCS model yields the same asymptotic
behavior in the dirty limit, regardless of the choice of ωp

or ∆; the constant is only sensitive upon the ratio of ∆ to
Tc.) The two points for Nb shown in Fig. 1, (reproduced
in Fig. 4), fall close to this line27,28 and are clearly in the
dirty limit. Thus, the scaling relation ρs ∝ σdc Tc is the
hallmark of a BCS dirty-limit system. The scaling rela-
tion for the copper-oxide superconductors ρs ≃ 35 σdc Tc

is slightly less than the asymptotic behavior observed for
the weak-limit BCS material. This difference is perhaps
due to the different symmetry of the superconducting
energy gap in the two systems, and the fact that in the
copper-oxide materials there is still a substantial amount
of low-frequency residual conductivity at low tempera-
ture. Regardless of these differences, the empirical scal-
ing relation ρs ∝ σdc Tc is observed in both the copper
oxide and disordered elemental superconductors. If it is
true in general that ρs ∝ σdc 2∆, then this necessarily
implies that ∆ ∝ Tc. In the optimally-doped and over-
doped materials, there is some evidence that ∆0 ∝ Tc

(Ref. 52). In the underdoped materials, large gaps are
observed to develop in the normal state53 well above Tc.
While it has been observed that the energy scale over
which spectral weight is transferred into the condensate
is much larger in the underdoped materials than it is for
the optimally-doped materials,54,55 the majority of the
spectral weight is still captured at energies comparable
to Tc. This would support the view that the energy scale
relevant to the formation of the condensate is propor-
tional to Tc.

It is of some interest at this point to compare the em-
pirical relation, that ρs is proportional to σdc Tc, with
the expression for the penetration depth that is given by
the Ginzburg-Landau theory modified for the dirty limit.
In general, the expression for the London penetration
depth is given by λL(T → 0) =

√

mc2/(4πnse2), where
ns ≡ n is the superconducting carrier concentration. In
the dirty limit one can show that ρs(dirty)/ρs(clean) =
l/ξ0 (Ref. 29). An increase in 1/τ reduces the amount
of superfluid and the penetration depth increases and
can be written as λ2 = (ξ0/l)λ2

L. Since λ2
∝ 1/ρs,

ξ0 ∝ 1/Tc, and σdc ∝ l, then one can recover the re-
sult that ρs ∝ σdc Tc. It is possible that in a d-wave
system the presence of nodal regions with a small super-
fluid density and ∆k ≪ ∆0, that the coherence length in
the above expression for λ2 now involves some average
including the nodal regions.

Summary. The implications of the linear scaling rela-
tion ρs ∝ σdc Tc in the copper-oxide superconductors has
been examined within the context of clean and dirty-limit
systems. In the conventional BCS superconductors (such
as Nb), this linear scaling is the hallmark of a dirty-limit
system. The copper-oxide materials are thought to be d-



5

wave superconductors, in which the clean limit is difficult
to achieve. The observed linear scaling strongly suggests
that the copper-oxide superconductors are either close to
or in the dirty limit. Estimates of ρs based on geomet-
ric arguments imply that the energy scale below which
the majority of the spectral weight is transferred into the
condensate scales linearly with Tc.
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