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Abstract:
The existence of spontaneous magnetization of Ising spins on directed

Barabasi-Albert networks is investigated with seven neighbors, by using
Monte Carlo simulations. In large systems we see the magnetization for
different temperatures T to decay after a characteristic time τ(T ), which is
extrapolated to diverge at zero temperature.
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Introduction:
The Ising magnet is since decades a standard tool of computational

physics [1]. We apply it here to scale-free networks [2], where previous sim-
ulations [3] indicated a Curie temperature increasing logarithmically with
increasing system size N . In contrast to that work we use here directed [4]
as opposed to undirected networks and then apply the standard Glauber
kinetic Ising model [1] to the fixed network.

Directed Barabasi-Albert network:
Putting Ising spins onto the sites (vertices, nodes) of a network, we sim-

ulate our Ising magnetic model on directed Barabasi-Albert networks. The
Barabasi-Albert network is grown such that the probability of a new site to
be connected to one of the already existing sites is proportional to the num-
ber of previous connections to this already existing site: The rich get richer.
In this way each new site selects exactly m old sites as neighbours.

Then each spin is influenced by the fixed number m of neighbours which
it had selected when joining the network. It is not influenced by other spins
which selected it as neighbour after it joined the network.

The Barabasi-Albert network is simulated by a Fortran program calcu-
lating the neighbours:
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parameter( nsites=500000,m=7,iseed=3, maxmax=20000,

1 max=nsites+m, length=1+2*m*nsites+2*m*m , T=1.0)

integer*8 ibm, iex

dimension list(length), is(max), iex(2*m+1), neighb(max,m)

ibm=iseed-1

factor=(0.25d0/2147483648.0d0)/21474836484.0d0

do 7 i=1,m

do 7 nn=1,m

neighb(i,nn)=nn

7 list((i-1)*m+nn)=nn

L=m*m

c All m initial sites are connected

do 1 i=m+1,max

do 2 new=1,m

4 ibm=ibm*16807

j=1+(ibm*factor+0.5)*L

if(j.le.0.or.j.gt.L) goto 4

j=list(j)

list(L+new)=j

list(L+m+new)=i

2 neighb(i,new)=j

1 L=L+2*m

c print *,ibm,neigh

c end of network and neighbourhood construction

At each step, a new spin is added which builds m new connections neighb,
randomly to already existing spins. The probability for an existing spin to
be chosen as neighbour is proportional to the number of its neighbours, with
the help of the Kertesz list.

Ising Magnet using Monte Carlo Simulations:
First we initialize a directed Barabasi-Albert network with m neighbours

(all m initial spins are connected with each other and themselves), here
m = 7. We put an Ising spins onto every site, with all spins up, because we
test here for ferromagnetism. Then with the standard Glauber (heat bath)
Monte Carlo algorithm spins we search for thermal equilibrium at positive
temperature. (All temperatures are given in units of coupling constant over
Boltzmann constant and change between 0.5 and 1.0 only).
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After putting all spins on the network, we go through the whole network
and use the Monte Carlo step (MCS) on every spin; we say that we make
one MCS per spin at each time step. Each spin is influenced by its exactly
m neighbours. We calculate the magnetization versus the number of time
steps, with the same number of neighbours m and different temperatures T .

Initially we start with T = 1.0, and a number of spins equal to 500,000,
and time up to 20,000. Then we change the temperatures from 1.0 to lower
values, for three samples with three iseed random numbers.

So we can draw a graph of magnetization versus time for different tem-
peratures to see how the magnetization changes, Fig. 1.
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Magnetization versus time; m=7, N=500000, slightly modified for arXiv.org to save megabytes

Figure 1: Magnetization versus MCS per spin, for N = 500000, time up to
20000, m = 7, iseed = 1,3,5 for different temperatures.

Now we compare these graphs with each other by two ways:
1. We determine the time τ1 after which the magnetization has decayed

to 3/4 of its initial value (here 375,000). This is done by plotting all results
of different temperatures in one graph, we can draw the horizontal line “mag-
netization equal 375,000”; then the nearly vertical lines cross the horizontal
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line at the time τ1. So we get different values of τ1 for different temperatures.
Then we draw the graph 1/ log

10
τ1 versus temperature as seen in Fig. 2.
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Figure 2: 1/ log
10

(τ) versus temperature for N = 500000, time up to 20000,
m = 7, iseed = 1,3,5, three sample. The + signs refer to τ1, the x signs to
τ2. The curves are parabolas correponding to an asymptotic Arrhenius law
τ ∝ exp(8.3/T ).

2. Alternatively we define a τ2(T ) such that the magnetization curves
M(t, T ), plotted as a function of the scaled time t/τ2(T ), agree with those
for the reference temperature T = 1.0 where τ2 = 1. Thus we get values of
τ2 of each sample, changing with different temperatures. Then we take the
decadic logarithm of the average τ2 to draw 1/ log(τ2) versus temperature as
shown also in Fig. 2.

Conclusion:
We see that all figures agree with the modified Arrhenius law:

1/ ln(τ) = 0.12 · T + const · T 2
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meaning that for each positive temperature there is a finite relaxation time
after which the initial magnetization decays towards zero: Similar to the one-
dimensional Ising model there is no ferromagnetism on this directed Barabasi-
Albert network.
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