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Noiseless limit of a ferro�uid rat
hetVolker Be
ker a, Andreas Engel a

aInstitut für Physik, Carl-von-Ossietzky-Universtität, 26111 Oldenburg, GermanyAbstra
tThe noiseless limit of a thermal rat
het devi
e using ferro�uids is studied in detail.Contrary to previous 
laims it is proved that no dire
ted transport 
an o

ur in thismodel in the absen
e of �u
tuations.Key words: thermal rat
het, ferro�uids, noiseless limitPACS: 05.40.-a, 82.70.-y, 75.50.Mm
1 Introdu
tionRe
ti�
ation of non-equilibrium �u
tuations 
an be a

omplished with thehelp of so-
alled rat
hets [1℄. In these devi
es a periodi
 potential, i.e. for
e�eld with zero spatial average, and undire
ted random noise 
onspire to pro-du
e dire
ted transport. Besides their fundamental importan
e for statisti
alme
hani
s [2℄ rat
hets have gained renewed interest under the name of �Brown-ian motors� due to their possible relevan
e for transport in biologi
al 
ells andpotential appli
ations in the �eld of nano-te
hnology [3℄. For a 
omprehensivereview of the �eld see [4℄.Re
ently a thermal rat
het system using ferro�uids was introdu
ed [5,6℄. Fer-ro�uids are 
olloidal suspensions of ferromagneti
 grains in a suitable 
arrierliquid [7℄. The spatial orientation of the ferromagneti
 parti
les is in�uen
edby the lo
al vorti
ity of the �ow �eld of the 
arrier liquid as well as by thermal�u
tuations due to random 
ollisions with the mole
ules of the liquid [8℄. More-over this orientation 
an be 
oupled via the magneti
 moment of the grainsto external magneti
 �elds. Choosing a suitable time dependen
e of this �eldto drive the system away from equilibrium it is possible to re
tify the orienta-tional �u
tuations of the ferromagneti
 parti
les. More pre
isely an externalEmail addresses: be
ker�theorie.physik.uni-oldenburg.de (Volker Be
ker),engel�theorie.physik.uni-oldenburg.de (Andreas Engel).Preprint submitted to Physi
a A 2 November 2004



magneti
 �eld without net rotating 
omponent 
an be used to set up noise-indu
ed rotations of the ferromagneti
 grains. Besides other advantages thissystem has the attra
tive feature that by the vis
ous 
oupling of the parti
lesto the surrounding liquid the angular momentum of the many nanos
opi
 mo-tors is transferred to the 
arrier liquid and shows up as a ma
ros
opi
 torquedensity whi
h 
an be easily dete
ted in experiments [5℄.The ne
essity of thermal �u
tuations for the operation of the rat
het of thedes
ribed type in ferro�uids was disputed in [9℄. In fa
t there are severalexamples, e.g. so-
alled ro
king rat
hets (see [4℄), in whi
h for appropriate
hoi
es of parameters dire
ted transport may even o

ur without �u
tuations.However, in order to spin up ferro�uid parti
les by a magneti
 �eld without netrotating 
omponent as introdu
ed in [5℄ the presen
e of thermal �u
tuations isindeed indispensable. This is shown in the present paper where we prove thatin the deterministi
 dynami
s no full rotations of the parti
les may o

ur andthat no torque may be transferred from the magneti
 �eld to the parti
les.To this end we �rst re
all in se
tion II the basi
 equations for a single ferro-magneti
 parti
le in an os
illating external �eld as derived in [5℄. The rat
hete�e
t was shown to o

ur in strongly diluted ferro�uids also su
h that dipole-dipole intera
tions between the ferromagneti
 grains may safely be negle
tedand a single-parti
le pi
ture is appropriate for the theoreti
al analysis. Settingthe noise intensity equal to zero we investigate in se
tions III and IV the de-tails of the deterministi
 dynami
s of the parti
le and show that only solutionswithout full rotation of the parti
le are possible. Finally, se
tion V 
ontainsthe main 
on
lusion.2 Basi
 equationsWe 
onsider a spheri
al parti
le of volume V and magneti
 moment m, subje
tto a time dependent magneti
 �eld of the form
H = (Hx, Hy(t), 0)) (1)where Hy(t) is a periodi
 fun
tion with period 2π/ω. As instru
tive example[5℄ we will 
onsider the spe
ial 
ase

Hy(t) = α cos(ωt) + β sin(2ωt + δ) (2)where α, β and the phase shift δ are 
ontrol parameters. The parti
le is im-mersed in a �uid of vis
osity η.To des
ribe the orientation of the parti
le we use the unit ve
tor e = m/mwhere m denotes the the magneti
 moment of the parti
le and m its modulus.2



Changes of e are des
ribed by the equation
de

dt
= Ω × e, (3)where Ω is the angular velo
ity of the parti
le.Furthermore we 
onsider an overdamped sto
hasti
 dynami
s in whi
h themagneti
 torque

Nmag = me × H (4)and the sto
hasti
 torque [11℄, whi
h results from the intera
tion between theparti
le and the surrounding liquid,
Nstoch =

√
2D ξ(t) (5)is 
ounterbalan
ed by the vis
ous torque [10℄:

Nvis = −6ηV Ω (6)In equation (5), ξ(t) is a ve
tor of Gaussian white noise with zero mean andunit varian
e. The noise intensity D is related to the temperature T of the liq-uid by the Einstein relation: D = 6ηV kBT , where kB stands for the Boltzmann
onstant. From (4), (5) and (6) we �nd:
6ηV Ω = me × H +

√
2D ξ(t). (7)This relation together with equation (3) yields a 
losed equation for the timeevolution of e of the form

de

dt
=

m

6ηV
(e ×H) × e +

√
2D

6ηV
ξ × e. (8)Introdu
ing dimensionless units we measure time in units of the inverse driv-ing frequen
y, t → t/ω, and use 6ηV ω/m as unit for the magneti
 �eldstrength H → (6ηV ω/m)H. The noise intensity D is s
aled a

ording to

D → (6ηV )2 D. Eq. (8) then redu
es to
de

dt
= (e × H) × e +

√
2D ξ × e. (9)It is 
onvenient to parametrize the orientation of the parti
le by the two angles

θ and φ a

ording to
e = (sin θ cos φ, sin θ sin φ, cos θ) (10)The Langevin equations for the time evolution of these angles are then of the3



form [11,12℄
dθ

dt
= − ∂

∂θ
U + D cot θ +

√
2D ξθ (11)

dφ

dt
= − 1

sin2 θ

∂

∂φ
U +

√
2D

sin θ
ξφ. (12)where we have introdu
ed the potential,

U(θ, φ) = −e · H = − sin θ (Hx cos φ + Hy(t) sin φ) . (13)The observable of prin
ipal interest for the thermal rat
het e�e
t in ferro�uidsis the average torque N arising at the magneti
 parti
le in the long time limit.Here the average is over time and hen
e in
ludes both the ensemble averageover di�erent realizations of the noise as well as the average over the timedependen
e of the external magneti
 �eld. The fo
us of the present paper ison the T → 0 limit implying D → 0. The other system parameters like the�uid vis
osity are assumed to stay 
onstant. We then �nd for the averagedtorque from the dimensionless forms of (4) and (6):
N = e × H = −Ω, (14)sin
e the sto
hasti
 torque is zero in the absen
e of �u
tuations.For later use it is instru
tive also to study the 
ase in whi
h the parti
leorientation is 
on�ned to the plane de�ned by θ ≡ π/2. In this 
ase we have

N = (0, 0, Nz) and Ω = (0, 0, ∂φ/∂t). Therefore from eq. (14) we �nd
Nz = lim

(t2−t1)→∞

1

t2 − t1

∫ t2

t1

dt′
∂φ

∂t′
(t′) (15)and hen
e

Nz = lim
(t2−t1)→∞

φ(t2) − φ(t1)

t2 − t1
(16)In the absen
e of parti
le rotation, i.e. if 0 < φ < 2π, therefore no averagetorque may arise.In the following two se
tions we study the deterministi
 dynami
s given by(9) with D = 0 in detail. We �rst 
onsider the 
ase Hx = 0 and then deal withthe more general situation where Hx 6= 0.4



3 The 
ase Hx = 0In this 
ase the external �eld has the form
H = (0, Hy(t), 0) (17)with a general time-dependent Hy(t). For D = 0 eq. (9) yields the followingequations for the 
omponents of e:

dex

dt
= −exHy(t)ey (18)

dey

dt
= −e2

yHy(t) + Hy(t) (19)
dez

dt
= −ezHy(t)ey . (20)(21)This system of di�erential equations is to be 
ompleted by appropriate initial
onditions at some initial time t0. Without loss of generality we 
an 
hoosethe 
oordinate system in su
h a way that ez(t0) = 0, i.e. we take the x-z-planeas the plane de�ned by e(t0) and the dire
tion of the magneti
 �eld. Fromequation (20) then follows that ez is identi
ally zero, ez(t) ≡ 0.>From (18) and (19) we �nd

ey(t) = tanh
(∫ t

t0

dt′Hy(t
′) + ar
tanh ey(t0)

) (22)and
ex(t) = ex(t0) exp

(

−
∫ t

t0

dt′Hy(t
′)ey(t

′)
) (23)The integral I in the exponential fun
tion in (23) 
an be determined using(22)

I =
∫ t

t0

dt′Hy(t
′) tanh

(

∫ t′

t0

dt′′Hy(t
′′) + ar
tanh ey(t0)

)

. (24)Substituting u(t) =
∫ t
t0

dt′Hy(t
′) + ar
tanh ey(t0) this gives

I =
∫ u(t)

u(t0)
du tanh(u) = ln

(

cosh (u(t))

cosh (u(t0))

) (25)and we �nally get the solution
ex(t) = ex(t0)

cosh
(ar
tanhey(t0)

)

cosh
(ar
tanh ey(t0) +

∫ t
t0

dt′Hy(t′)
) (26)

ey(t) = tanh
(∫ t

t0

dt′Hy(t
′) + ar
tanh ey(t0)

)

. (27)5
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tFig. 1. Traje
tories φ(t) for the 
ase Hx ≡ 0 and for the time dependen
e of
Hy(t) as de�ned in (2) and t0 = 0. The parameter values are 
hosen as α = 1,
β = 1, and δ = 0. The di�erent 
urves 
orrespond to di�erent initial 
onditions,
φ0 = π , 5π/6 , π/6 and 0 (from top to bottom). There are no rotary solutions in theabsen
e of �u
tuations and hen
e no average torque may arise. Note that the traje
-tories are di�erent for di�erent initial 
onditions, there is hen
e no unique long-timebehaviour.>From (26) it follows that there are no full rotations of the parti
le, be
ausethe x-
omponent of e 
annot 
hange sign. Expressed in terms of θ and φ,equations (26), (27) for this 
hoi
e of 
oordinates be
ome

θ(t) =
π

2
(28)

φ(t) = ar
tansinh
(

∫ t
t0

dt′Hy(t
′)
)

+ cosh
(

∫ t
t0

dt′Hy(t
′)
)

sin φ0

cos φ0



 , (29)where φ0 = φ(t0) The domain of the ar
tan fun
tion has to be 
hosen su
hthat ar
tan (tan(φ0)) = φ0. Some traje
tories of φ(t), for the time dependen
e
Hy(t) as given in (2) and a 
ertain 
hoi
e of parameters are shown in �gure 1.Note that there is no unique long time behaviour for Hx = 0. The traje
toriesof φ(t) are di�erent for di�erent initial 
onditions.The main 
on
lusion of this se
tion is the absen
e of full rotations of theferro�uid parti
le for Hx = 0. Hen
e φ is bounded to an interval φmin <
φ < φmax. Together with eq. (16) it follows that for Hx = 0 and any timedependen
e Hy(t) there is no average torque.6



4 The 
ase Hx > 0In the previous se
tion we have dis
ussed the behavior of a ferromagneti
parti
le in a time-dependent �eld in y-dire
tion and we have shown that inthis 
ase no full rotations of the parti
le may o

ur. Intuitively it is 
learthat an additional 
onstant �eld in x-dire
tion should not 
hange this result.Nevertheless the argument given in the previous se
tion a

ording to whi
hthe x-
omponent of the orientation ve
tor e 
annot 
hange sign does no longerhold true. If, e.g., ex(t0) is negative and Hx is positive while Hy(t) = 0, theorientation of e will tend toward the dire
tion of H and therefore ex has to
hange sign. It is therefore ne
essary to take a 
loser look on the possibleimpli
ations of a 
onstant magneti
 �eld in x-dire
tion for the motion of themagneti
 parti
le. We will show in this se
tion that even in the presen
e ofsu
h a �eld θ will 
onverge to π/2 in the long time limit while φ will be 
on�nedto an interval φmin < φ < φmax.We start with eqs. (11) and (12) in the deterministi
 limit, D = 0. Usingeq. (13) they 
an be written in the form
dθ

dt
= cos θ

(

Hx cos φ + Hy(t) sin φ
) (30)

dφ

dt
=

1

sin θ
Hx

(

G(t) cos φ − sin φ
)

, (31)where we have introdu
ed the fun
tion G(t) = Hy(t)/Hx.Let us �rst look at the sign of dφ/dt whi
h is given bysgn (dφ

dt

)

= sgn(cos φ) sgn(G(t) − tan φ). (32)Sin
e G(t) is a periodi
 fun
tion it has a maximum Gmax and a minimum
Gmin. Denote by φmax and φmin the solutions of the equation tanφ = Gmax and
tan φ = Gmin respe
tively in the interval (−π/2, π/2). Assuming φ to belongto the interval (−π/2, 3π/2) it is easy then to show that dφ/dt is always (i.e.for all t) positive if −π/2 < φ < φmin or φmax +π < φ < 3π/2 (region II), andthat it is always negative for φmax < φ < φmin +π (region I) (
f. �g.2). For theremaining values of φ the sign of dφ/dt depends on the a
tual value of G(t).Note that at φ = ±π/2 both (G(t) − tanφ) and cos φ 
hange sign su
h that
dφ/dt does not. Hen
e these �
riti
al� points 
orresponding to ex = 0 belongto regions in whi
h the sign of dφ/dt is independent of time.In order to dis
uss now the time evolution of θ and φ we have to 
onsiderdi�erent initial 
onditions for φ. Quite generally we may assume Hx > 0without loss of generality. Let us �rst 
onsider the 
ase −π/2 ≤ φ0 ≤ π/2,i.e. φ starts in regions I, II, or III. Then φ(t) has to rea
h region III sooner7
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tual value of G(t). Right: De�nition of φmax and φminand graphi
al determination of the sign of dφ/dt.or later and will not be able to leave it again (
f. �g.2). Stri
tly speaking thisis 
orre
t only if φ(t) evolves 
ontinuously. But we have to take into a

ountalso that there is the possibility of dis
ontinuous 
hanges of φ when θ rea
hesthe limiting values θ = 0 or θ = π. However, this 
annot happen either. Toprove this statement we introdu
e the quantity
h =

ez

ex

. (33)Using (9) with D = 0 its time derivative is given by
dh

dt
= −Hxez

e2
x

= −Hx

ex

h , (34)or expressed in terms of θ and φ

dh

dt
= − Hx

cos φ sin θ
h . (35)Hen
e

h(t) = h(t0) exp

(

−
∫ t

t0

dt′
Hx

cos φ(t′) sin θ(t′)

) (36)A

ordingly, as long as φ stays in the interval (−π/2..π/2) the integral in theexponent of (36) grows and 
onsequently |h(t)| monotoni
ally de
reases withtime. Therefore θ 
annot rea
h 0 or π.Hen
e φ(t) 
annot leave region III neither by 
ontinuous nor by dis
ontinuous
hanges. On the one hand this ensures that φmin ≤ φ(t) ≤ φmax for all t onthe other hand it implies via (36) that h(t) → 0 for large t and hen
e that θ
onverges asymptoti
ally to π/2. 8



If π/2 < φ0 < 3π/2 the evolution of φ starts in regions I, II, or IV. If at somelater time φ(t) is found in the interval (−π/2, π/2) we are ba
k to the previous
ase. If not and h(t0) 6= 0 eq. (36) implies that |h(t)| in
reases monotoni
allywith time and a

ordingly θ tends to either 0 or π. By symmetry both 
ases areequivalent so ea
h other so let us fo
us on θ → 0. Then h ∼ 1/θ and eq. (35)a
quires the asymptoti
 form dh/dt = C h2 with some positive 
onstant C.Therefore there will be a �nite time singularity in the solution h(t) and weget θ(t1) = 0 for some �nite t1. Sin
e the magneti
 �eld has a positive x-
omponent it is 
lear that for t > t1 we will have −π/2 ≤ φ(t) ≤ π/2 andhen
e we are again ba
k to the �rst 
ase.Summing up, ex
ept for a set of measure zero, namely φmin+π < φ0 < φmax+πand θ = π/2, all initial 
onditions give rise to a long time dynami
s with valuesof φ between φmin and φmax. In any 
ase also for Hx 6= 0 no full rotations ofthe parti
le are possible sin
e these would imply that φ(t) lies for some t inregion III whi
h it were unable to leave again. As in the 
ase Hx = 0 we then�nd from (16) that no average torque is transferred from the magneti
 �eldto the parti
le or its surrounding liquid.5 Con
lusionBy a detailed analysis of the deterministi
 dynami
s of a magneti
 dipole inan external magneti
 �eld with 
onstant x-
omponent and time periodi
 y-
omponent we have proved that no full rotations of the parti
le may o

ur.This shows that for the thermal rat
het e�e
t in ferro�uids reported in [5℄thermal �u
tuations are indispensable.Referen
es[1℄ R. D. Astumian and P. Hänggi, Physi
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