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Dynamical condensation of polaritons
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We develop a few-level quantum theory of microcavity polaritons in presence of both Coulomb
and polariton-phonon interaction, obeying particle number conservation. We study the growth of
a macroscopic population of condensed particles in the lowest polariton state, under steady-state
incoherent excitation of higher energy states. The Coulomb interaction drives the quantum fluctu-
ations that finally trigger the transition to condensed phase, while the polariton-phonon interaction
results in a Boltzmann dynamics that induces a lower state occupation. The transition occurs below
the optical saturation density, as in recent experimental findings.

PACS numbers: 71.36.+c,71.35.Lk,42.65.-k

Quantum fluids are the most remarkable manifestation
of quantum mechanics at the macroscopic scale. Super-
conductivity, superfluidity [1] and more recently Bose-
Einstein condensation (BEC) of diluted atoms [2] are all
examples of a system in which many particles share the
same quantum mechanical wave function. A long sought
and never observed quantum fluid is the BEC of excitons
in semiconductors [3, 4]. It is believed that exciton BEC
is hindered by the very efficient scattering mechanisms
– both elastic on defects and impurities and inelastic on
e.g. phonons – which induce localization and decoher-
ence. On the other hand, the possibility of achieving a
quantum fluid in a solid-state device, with ease of control
and integration, would open a new promising way to the
implementation of quantum information technology [5].

Recently, it was suggested that a quantum phase tran-
sition of polaritons in a semiconductor microcavity un-
der steady-state incoherent optical pumping might oc-
cur, with formation of a collective state of many polari-
tons [6, 7, 8, 9, 10]. The interest of this system resides
in the mixed nature of polaritons, which are a linear
superposition of photon and exciton states. The very
light polariton effective mass implies a long polariton co-
herence length and robustness to scattering processes.
The exciton content, on the other hand, is responsible
for polariton-polariton interaction. This nonlinearity is
eventually expected to trigger the quantum phase tran-
sition.

A parallel between this mechanism and conventional
BEC is made hazardous by the Mermin-Wagner theorem
[11], stating that a phase transition with an evident sym-
metry breaking is forbidden in a 2-dimensional system.
For this reason, the phenomenon has been rather inter-
preted as a polariton laser transition [9, 10]. A few exper-
imental results suggest the occurrence of this transition
[6, 7, 8], but the unexpected observation of a thermal-
type intensity correlation function far above threshold [8],
doesn’t match the laser picture [12]. Laussy et al. [10]
have pointed out that an important role is played by the
particle number conservation. Indeed, in any symmetry

breaking approach, a state with a well defined quantum
phase cannot be stationary, due to the fluctuations of
the particle number [13]. Therefore, as in the theory of
BEC in diluted atoms, a number-conserving approach is
needed in order to correctly describe the quantum phase
diffusion of the condensate [13, 14, 15]. In order to in-
vestigate the appearance of condensation (either at finite
temperature or in a non-equilibrium regime), it is impor-
tant to remark that in the BEC models [1, 2, 16] both
the condensed and the non-condensed phases, having dif-
ferent fluctuation terms, are considered. In these models,
the interactions are the key feature inducing the phase
transition (leading to the condensate) [16]. On the the-
oretical side, the existing works prefer overlooking this
aspect [9, 10], pursuing a strict analogy with the laser
theory.

In this letter we develop a few-level model of the po-
lariton dynamics which includes the polariton-polariton
Coulomb interaction and the polariton-phonon scattering
on equal grounds, considering a non-equilibrium steady-
state optical pump populating the high energy state.
The model is solved within the Hartree-Fock-Bogoliubov
(HFB) approximation, as in the case of quantum fluids
at finite temperature [17, 18], but imposing the particle
number conservation [14, 15]. The resulting polariton
dynamics, under steady-state excitation of an incoherent
polariton population, displays a transition at a finite in-
tensity. At threshold the population of the condensed
phase increases dramatically. Above threshold, while the
population of the non- condensed phase displays an up-
per bound, the condensate grows linearly. We show that
the polariton-polariton interaction is responsible for this
peculiar behavior.

The Hamiltonian for the lower polariton in presence of
Coulomb and polariton-phonon scattering is [19, 20]

H =
∑

k

ωkp̂†kp̂k +
∑

q

ωqb
†
qbq + HC + Hph (1)

HC =
1

4

∑

kk′q

v
(q)
kk′ p̂

†
k+q p̂

†
k′−q p̂k′ p̂k (2)
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Hph =
∑

kk′q

g
(q)
kk′(b

†
q + b−q)(p̂

†
kp̂k′ + p̂†k′ p̂k) , (3)

where p̂k defines a Bose field [p̂k, p̂†k′ ] = δkk′ . The polari-
ton operator p̂k = Pkâk + p̃k is expressed as the sum
of a condensate part Pkâk and a fluctuation term p̃k

[15]. The condensed particle operator obeys the Bose

commutation relations [âk, â†
k] = 1 and nc(k) = 〈â†

kâk〉
defines the number of condensed particles in the state
with momentum k, while the amplitude Pk represents
the wave function of the condensate in the configura-
tion space. In a standard quantum-field approach [15],
this wave function is determined self-consistently by the
Gross-Pitaevskii equation. The fluctuation part p̃k obeys
the commutation relation [p̃k, p̃†k] = 1− | Pk |2. The op-
erators are treated in the Heisenberg representation. The
total population is Nkk = 〈p̂†kp̂k〉 =| Pk |2 nc(k) + Ñkk,

where Ñkk = 〈p̃†kp̃k〉 is the non-condensed population.
Condensed particles are assumed in the lowest state only,
nc(k) = ncδ0,k, while we assume p̂k = p̃k for k 6= 0. In
the number-conserving HFB treatment, only processes
creating (or annihilating) pairs of condensed particles are
taken into account. In this approximation the Coulomb
Hamiltonian is written as [17]

HC =
v

4

∑

k

{2(N00 +
∑

k′ 6=0

Ñk′k′)p̂†kp̂k +

+ [(P ∗
0 )2â†

0â
†
0 + (1 − δk,0)p̃

†
0p̃

†
0]p̃kp̃k} + h.c. (4)

The first line contains the mean field population terms
according to the Hartree-Fock approximation, while in
the second line no mean-field approximation has been in-
troduced, in order to allow for particle number conserva-
tion. In order to conserve momentum, the only relevant
amplitudes are m̃k = 〈â†

0â
†
0p̃kp̃k〉 and m̃0k = 〈p̃†0p̃

†
0p̃kp̃k〉.

These terms correspond to Coulomb scattering diagrams
in the theory of interacting bosons [16]. The time evo-
lution of the number of condensed particles nc, of the
populations Ñkk(t) and of the scattering amplitudes m̃k

and m̃0k, can be evaluated by means of the Heisen-
berg equations of motion. In the following we denote

b
(1)
q = b†q,b

(2)
q = bq, p̂

(1)
k = p̂†k and p̂

(2)
k = p̂k). Consistently

with the HFB Hamiltonian, we factor all the higher order
correlations according to the self consistent mean field ap-
proximation [18]. For example â†

0â
†
0p̂

†
kp̂kp̃0p̃0 = Nkkm̃0.

Due to polariton-phonon interaction, phonon-assisted
correlations are coupled to the HFB variables. The
equations for the first order phonon-assisted correlations

〈â†
0b

(i)
q p̂

(j)
k 〉 and 〈b

(i)
q p̃

(j)
k p̂

(l)
k′ 〉 (i, j, l = 1, 2) are formally

solved within the self-consistent Markov approximation
and the result is plugged into the HFB equations. In this
way, the polariton-phonon coupling introduces effective
phonon-mediated polariton-polariton interaction terms,

the lowest-order ones being proportional to |g
(q)
kk′ |2. The

higher order phonon assisted correlations are factored ac-
cording to the mean field approximation. For example

â†
0â

†
0b

†
qb−q′ p̃0p̃0 = δq,−q′nqm̃0. The phonon populations

nq are assumed to be thermally distributed at the lattice
temperature.

 

 

2-level model

1Ψ

0Ψ

k

E

lower polariton

effective 
bottleneck state

band-bottom state

 

 

2-level model

1Ψ

0Ψ

k

E

lower polariton

effective 
bottleneck state

band-bottom state

FIG. 1: Lower polariton dispersion. The relaxation between
the bottleneck region and the band bottom is described by a
2-level model in which the bottleneck state has an effective
population given by ρX .

These prescriptions give a closed set of coupled equa-
tions for nc, Ñkk, m̃k, m̃0k. The solution of the whole set
of equations is a cumbersome task. In a typical photo-
luminescence experiment under nonresonant excitation,
the steep polariton dispersion results in a relaxation bot-
tleneck [21, 22], with polariton population piling up at
the boundary of the flat exciton-like region of the po-
lariton dispersion. From there, polariton which relax to
the band-bottom immediately recombine by emitting a
photon. At moderate densities [19], the multiple scat-
tering between polaritons can be neglected. Under these
conditions, it is reasonable to assume that the bottleneck
states and the state at k = 0 obey a closed dynamics. We
therefore restrict to a simplified two-level model, sketched
in Fig. 1, which describes the coupling between the po-
lariton state at the band bottom and one effective higher
energy state in the bottleneck region. The creation op-
erator for the band bottom state is p̂†0 whereas that for

the bottleneck state is p̂†1. As in previous treatments [23],
the high energy state is considered as an effective state
spanning the whole bottleneck region. For this reason,
all the matrix elements involving this state are renormal-
ized by the total population ρx in the bottleneck region.
This latter is estimated from the assumption of a ther-
malized polariton distribution at the bottleneck [23], and
is related to the quantization area A = L2

c , the exciton
mass Mexc and the exciton energy thermal broadening
E ≈ kBT by

ρX = (A/2π)(MexcE/h̄2), (5)

resulting in an effective phonon coupling strength G [22].
We assume intrinsic linewidths γ0 and γ1 for the two
levels, accounting for radiative recombination as well
as nonradiative homogeneous and inhomogeneous energy
broadening. The closed set of six equations for the HFB
variables are



3

ṅc = −2 |P0|
2 [γ0 + GΓc(nq − N11)] nc + 2G |P0|

2 Γc(1 + nq)N11 + vIm[(P ∗
0 )2(m̃0 + m̃1)]

˙̃N00 = −2Q[γ0 + GΓ̃0(nq − N11)]Ñ00 + 2GQ2Γ̃0(1 + nq)N11 + vQIm[m̃01 − (P ∗
0 )2m̃0]

˙̃N11 = −2[γ1 + GΓ1(1 + nq + N00)]Ñ11 + 2GΓ1nqN00 − vIm[m̃01 + (P ∗
0 )2m̃1] + F

˙̃m0 = −2{γ0 + G(|P0|
2
ζ0 + Qζ̃0)(nq − N11) + i(2Q − 1)[ω0 + v(N00 + N11)]}m̃0 +

+ iv[P 2
0 nc(m̃

∗
01 + 2Ñ2

00) − QÑ00(m̃1 + 2P 2
0 n2

c)]

˙̃m1 = −2{|P0|
2
[γ0 + Gζ1(nq − 3N11)] + γ1 + Gζ̃1(1 + nq + N00) + i[ω1 − |P0|

2ω0 + vQ(N00 + N11)]}m̃1 +

+ iv[P 2
0 nc(m̃01 + 2Ñ2

11) − Ñ11(m̃0 + 2P 2
0 n2

c)]

˙̃m01 = −2{Q[γ0 + Gζ̃01(nq − 3N11)] + γ1 + Gζ01(1 + nq + 3N00 − 2nc) + i[ω1 − Qω0 + v|P0|
2(N00 + N11)]}m̃01 +

+ iv[QÑ00(m̃1 + 2Ñ2
11) − Ñ11(P

2
0 m̃∗

0 + 2Ñ2
00)]. (6)

where | P0 |2= nc/(nc + Ñ00) and we have indicated
Q = 1−|P0|

2, Γ1 = γ1/(γ1+γ0), Γc = (γ1/(γ1+ |P0|
2γ0),

ζ0 = γ1/[γ1 + (1 + Q)γ0], ζ1 = γ1/(3γ1 + |P0|
2γ0), and

ζ̃1 = γ1/[γ1+(3−2Q)γ0] (the remaining terms Γ̃0, ζ̃0, ζ̃01,
ζ01 are obtained exchanging |P0|

2 and Q in Γc, ζ0, ζ1, ζ̃1,
respectively). We have denoted by n01 the phonon pop-
ulation at the energy matching the gap between the two
levels. |P0|

2 is related self-consistently to the condensate
fraction in according to [15] as previously noted.

These equations show some interesting properties. The
coupling between the condensate population and the cor-
relations, responsible of the instability that drives the
condensate buildup, is mediated by the Coulomb inter-
action, as expected. The phonon-mediated interaction
induces a renormalization of the lifetimes and Boltzmann
relaxation terms [22]. For the numerical evaluation, pa-
rameters of a typical AlAs/GaAs microcavity have been
used, with a quantization size of A = 100 µm2. This
parameter enters the definition of the Coulomb [20] and
phonon [22] coupling terms as well as the expression for
ρx [23, 24]. A lattice temperature T = 10 K is as-
sumed. The bare polariton linewidths are taken to be
γ0 = 0.2 meV, γ1 = 1 meV. Assuming a Rabi splitting
ΩR = 3.5 meV, the Coulomb matrix element is evalu-
ated to be v = 5 × 10−4 meV, while the resulting effec-
tive phonon coupling strength (taking into account the
bottleneck population) is G = 10−2 meV. For an energy
gap ω1−ω0 = 2 meV (negative cavity-exciton detuning),
we estimate a bottleneck population ρx = 104 [23] and a
phonon population n01 = 0.1. We introduce a constant
F , representing a steady-state source of polariton popu-
lation produced at the bottleneck after relaxation from
higher-energy states, as in a typical experiment with non-
resonant CW excitation [6, 7, 8]. We use a small seed for
the amplitude P0 in order to trigger the non trivial so-
lution with nc 6= 0. We have carefully checked that the
results are independent of the value chosen for this seed.

We have solved numerically the set of equations as a
function of time. For each value of the pump amplitude,

we observe after a transient a stationary solution for all
the quantities. In the following, we discuss these station-
ary values as a function of the pump intensity F . Fig.
2(a) displays the stationary populations as a function of
the normalized pump intensity. A threshold occurs at
F = Fth, for which nc ≃ 1. At threshold, the popu-
lation of bottleneck polaritons Ñ11 saturates at a value
of 20 polaritons per mode, i.e. to an exciton density of
2×1011 cm−2, close to the exciton optical saturation den-
sity. However, the experimental evidence was obtained
in a sample containing 12 quantum wells [8]. In such a
situation, the predicted threshold density per quantum
well is ∼ 1010 cm−2, significantly lower than saturation
and in fairly good agreement with the experimental esti-
mate [8]. Above threshold, the condensate population nc

grows linearly whereas the non condensed polariton pop-
ulation Ñ00 decreases asymptotically to a finite value.
Hence, for pump intensities well above threshold, the
condensate fraction approaches unity, as also indicated
by the behaviour of |P0|

2 plotted in Fig. 2(b). Our find-
ing that the condensate fraction approaches unity only
at F ≫ Fth might provide an interpretation of the un-
expectedly slow decrease of the second-order coherence
observed as a function of pump intensity [8]. An eval-
uation of the second order correlation function in the
framework of the present theory represents a cumber-
some task and is currently in progress. Fig. 2(c) displays
the steady-state quantum correlations m̃0, m̃1, and m̃01.
These quantities are negligible below threshold but dra-
matically increase at threshold, thus triggering the phase
transition, as expected according to both laser [12] and
BEC [1, 2, 3] quantum theories. In order to clarify the
role of the Coulomb interaction, we compare in Fig. 2(a)
and (b) the steady state solutions obtained neglecting all
Coulomb terms in (6). By inspection of Eqs. (6) it is
clear that the populations obey a standard Boltzmann
dynamics, while the correlations m̃0, m̃1, and m̃01 ad-
mit a vanishing solution. Without Coulomb interaction,
therefore, a standard three-level Boltzmann equation is



4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

 

(c)

|P
0|2

0 1 2 3 4 5

1

10

100

1000

(b)

 normalized pump intensity F/F
th

co
rr

el
at

io
n

s

0

100

200

300

400

 

(a)

 p
o

p
u

la
ti

o
n

s

1

1

10

100

 

 

  

FIG. 2: The steady state solutions plotted as functions of the
normalized pump intensity. (a) Solid line: the condensate
population nc (plotted also on a log-log scale in the inset).

Dashed line: the non condensed low-energy population Ñ00.
Dot-dashed line: the high-energy population Ñ11. The same
quantities nc (dotted) and Ñ00 (dot-dot-dashed), computed
neglecting the Coulomb interaction, are also plotted. (b) The
condensate fraction |P0|

2 as obtained from the full solution
(solid line) and neglecting the Coulomb interaction (dashed
line). (c) The Coulomb correlations |m̃0| (solid line), |m̃1|
(dashed line) and |m̃01| (dot-dashed line).

recovered. As a consequence, the equations for nc and
Ñ00 have identical form and result in a similar dynamics
for the two quantities. This is shown in Fig. 2 (a) where
both nc and Ñ00 grow linearly above threshold, and in
Fig. 2 (b) where |P0| reaches a stationary value of only
0.5. From this comparison the important role played by
the Coulomb interaction in determining the phase tran-
sition behaviour of the system is clear.

In conclusion, within a few-level model we have de-
scribed the dynamical condensation of microcavity po-
laritons. Our theory is analogous to the quantum field
description of BEC of a diluted atom gas, accounting
for the coexistence of a condensed and a non-condensed
phase. The phase transition at threshold is triggered by

quantum fluctuations via the Coulomb interaction. In
this respect, our result is more closely related to BEC
than the polariton laser theory [9, 10], in which the po-
lariton field is treated according to the quantum theory
of a single-mode laser. Like both number conserving
BEC [15] and laser [12] theories, our treatment predicts
zero expectation value of the condensate quantum field
〈â†

0〉, and thus preserves the U(1) phase symmetry. The
condensate wave function P0 is nonvanishing even below
threshold, due to fluctuations, and represents therefore
an order parameter only in a weak sense, in analogy with
the average electric field amplitude in the quantum laser
theory [12]. On this ground, the mechanism we describe
might be considered as a polariton laser. However, the
coexistence of the two phases, as well as the Coulomb
interaction play a crucial role in the condensation dy-
namics and allow a satisfactory account of experimental
results.
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