
ar
X

iv
:g

r-
qc

/0
41

01
48

 v
1 

  2
9 

O
ct

 2
00

4
Gravity tests in the solar system and the Pioneer anomaly
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We build up a new phenomenological framework associated with a minimal generalization of
Einsteinian gravitation theory. When linearity, stationarity and isotropy are assumed, tests in the
solar system are characterized by two potentials which generalize respectively the Newton potential
and the parameter γ of parametrized post-Newtonian formalism. The new framework seems to have
the capability to account for the Pioneer anomaly besides other gravity tests.

A number of tests of gravity have now been performed
in the solar system and they put severe constraints on
deviations from general relativity [1]. However astro-
physical and cosmological observations show anomalies,
notably in the rotation curves of galaxies and in the re-
lation between redshifts and luminosities for supernovae.
Since gravity tests agree with general relativity, these
anomalies are commonly accounted for by introducing
dark components to the content of the Universe. As
long as these dark components are not detected by other
means, the anomalies can also be ascribed to modifi-
cations of standard gravity at galactic or cosmic scales
[2]. Obviously, any modification of this kind also has to
match the gravity tests in the solar system. The Pioneer
anomaly may be a central piece of information in this de-
bate by pointing at some anomalous behaviour of gravity
at scales of the order of the size of the solar system.

The anomaly is recorded on radio tracking data from
the Pioneer 10/11 probes during their travel to the bor-
ders of the solar system [3]. Doppler data show de-
viations from calculations based on general relativity.
Precisely, the Doppler residuals, that is the differences
between observed and modelled velocities, vary linearly
with time, for distances r from the Sun ranging from
20 to 70 astronomical units (AU). Equivalently, the
anomaly can be described as a roughly constant accel-
eration aP ≃ 8 × 10−10ms−2 directed towards the Sun.
The effect has not been explained to date though a num-
ber of mechanisms have been considered to this aim,
ranging from systematic effects to new theoretical ap-
proaches [4, 5, 6]. The potential importance of the Pio-
neer anomaly for fundamental physics and space naviga-
tion justifies it to be submitted to further experimental
and theoretical scrutiny.

In the present letter, we will focus the attention on
the key question of compatibility of the Pioneer anomaly
with other gravity tests. The anomaly cannot be ex-
plained simply from a long-range modification of the
Newton potential. If the anomalous acceleration aP is
ascribed to such a deviation, its value is indeed too large
to remain unnoticed on the planetary tests [4]. In the fol-
lowing however, we will show that this problem may be
cured by considering an extended gravitation theory. We

will introduce a generalized framework which preserves
the foundations on which Einstein built up general rela-
tivity, that is to say the metric character of the theory, its
gauge invariance, the law of geodesic motion and, there-
fore, the principle of equivalence. We will only modify
the dynamical equation of the metric determined by the
relation between curvature and stress tensors. The mo-
tivations of this modification will be discussed as well as
its phenomenological consequences described by two po-
tentials or, equivalently, two running coupling constants
replacing the ordinary gravitation constant.

For studying gravity in the outer solar system, we
may use the assumptions of linearity, stationarity and
isotropy. As a matter of fact, the effects associated with
non linearity of general relativity are small in the outer
solar system. This is also true for the effects induced by
the rotation and non sphericity of the Sun. In the follow-
ing, we will consider that these small effects are properly
taken into account in the standard description, for exam-
ple in the general relativistic calculation of Doppler data
for Pioneer probes [4]. As a consequence, it will be possi-
ble to calculate the potential anomalies, evaluated after
a subtraction of the standard result, with a linearized
theory of gravity and a stationary and isotropic solution.

The phenomenological framework built up in this man-
ner will be characterized by two potentials accomodat-
ing the phenomena usually associated with a long-range
modification of the Newton potential [7] and an Edding-
ton parameter γ differing from unity in the “parametrized
post-Newtonian” (PPN) formalism [1]. We will show that
the new framework opens new possibilities to account for
the Pioneer anomaly as well as other gravity tests. We
will in particular discuss a simple version of the frame-
work, where the potentials are superpositions of terms
proportional to 1/r and r, which already opens free space
for these phenomena while simultaneously allowing us to
derive the parameters from observations.

As a first step, we now present the motivations for an
extension of general relativity. As already stated, the
basic geometric features of general relativity are left un-
changed. Motions are defined as Riemann geodesics asso-
ciated with a metric tensor gµν = ηµν +hµν with ηµν the
Minkowski metric (signature +1,−1,−1,−1) and hµν a
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small perturbation. In a linearized description, the cur-
vature tensors are expressed at first order in hµν . The
Riemann tensor Rµρνσ , the Ricci tensor Rµν = ηρσRµρνσ

and the scalar curvature R = ηµνRµν are conveniently
written in the Fourier domain, with k the wavevector.
The Einstein tensor Eµν = Rµν − 1

2ηµνR is transverse
(kνEµν = 0) as a consequence of Bianchi identity, and
this is also the case for the stress tensor Tµν due to
energy-momentum conservation.

In Einsteinian theory, these two tensors are merely pro-
portional to each other Eµν = 8π

c4 GNTµν with GN the
Newton constant. But it is easy to write a more general
linear relation between the two tensors

Eµν [k] = Rµν −
1

2
ηµνR = χµν

ρσ [k] Tρσ [k] (1)

χµν
ρσ describes a momentum-dependent linear response

of spacetime curvature to stress tensors. This relation
preserves transversality of Eµν which can be read as a
constraint kνχµν

ρσ = 0 on the linear susceptibility. In
spite of this constraint, the susceptibility can still take
different forms as proven by introducing projections over
traceless and traced components [8]

Eµν = E(0)
µν + E(1)

µν (2)

E(0)
µν =

(
πρ

µπσ
ν + πσ

µπρ
ν

2
−

πµνπρσ

3

)
Eρσ

E(1)
µν =

πµνπρσ

3
Eρσ , πµν = ηµν −

kµkν

k2

The factors in front of Eρσ in the righthand side of these
equations are orthogonal projectors on the two sectors
explored by transverse tensors. The component (0) has
a null trace and it is related to the conformally invari-
ant Weyl curvature tensor whereas the component (1) is
related to the scalar curvature.

Linear response functions χµν
ρσ are naturally pro-

duced by quantum corrections to general relativity [8]. In
general, they are momentum-dependent and differ in the
two sectors of traceless and traced perturbations [9]. For
example, electromagnetic corrections only contribute to
the sector (0) as a consequence of conformal invariance.
Quantum corrections are usually found to scale as powers
Gn

N of the Newton constant with n > 1 thus leading in
the forthcoming discussions to extra potentials scaling as
1

rn with significant effects in the inner solar system [10].
But long range effects may also be obtained, for example
from the Sakharov argument deriving gravity from a kind
of elasticity of quantum vacuum [11]. As Einstein theory
is not renormalizable [12], the response functions cannot
be fully calculated from the first principles. In the sequel
of this letter, we adopt a phenomenological point of view
by considering the long range modifications which are al-
lowed by equation (1) and comparing their consequences
to observations in the outer solar system.

We now go one step further by describing the Sun as a
point source Tρσ (x) = ηρ0ησ0Mc2δ (x) at rest in the cen-

ter of the solar system; M is the mass of the Sun and δ (x)
a 3-dimensional Dirac distribution bearing on the space
coordinates x. As a consequence of stationarity, there is
no time variation and the frequency k0 remains null in
the following. The Einstein tensor is written in Fourier
space in terms of the spatial part k of the wavevector
Eµν [k] = χµν

00 [k] Mc2. As a consequence of isotropy,
the linear expression (1) of Eµν takes the form

Eµν [k] =

(
π0

µπ0
ν + π0

µπ0
ν

2
−

πµνπ00

3

)
G̃(0) [k]

8πM

c2

+
πµνπ00

3
G̃(1) [k]

8πM

c2
(3)

This constitutes a twofold generalization of Einstein
equation which is recovered for G̃(0) [k] = G̃(1) [k] = GN .

First, the scalar functions G̃(0) [k] and G̃(1) [k] are mo-
mentum dependent thus having the status of running
coupling constants [13]. Then, these functions differ in
the two sectors, which will turn out to be the key point
for accomodating a Pioneer-like anomaly.

In order to write the solution of equations (3) which is
stationary and isotropic, we use the PPN gauge [1]

h00 (r) = 2ΦN (r) (4)

hjk (r) = 2 (ΦN (r) − ΦP (r)) ηjk

The two potentials ΦN and ΦP depend on the distance
r to the Sun. The first one ΦN (r) represents a Newton
potential with long-range modifications which could af-
fect the motions of outer planets [7]. Comparison with
observations will constrain ΦN to remain close to its stan-
dard expression proportional to 1

r
. The second potential

ΦP (r) generalizes the PPN parameter γ to a function
of the distance (see below). Since it is involved in the
propagation of light, comparison with observations will
constrain ΦP to remain small enough in the vicinity of
the Sun [1]. As shown below, the second potential ΦP

will also affect eccentric motions such as those of Pioneer
probes.

The two potentials ΦN,P are directly related to the
running gravitational constants. Writing down equations
(3) in the PPN gauge, we indeed obtain

∆Φa (x)

4π
=

G̃a (x)M

c2
, a = N, P (5)

where ∆ is the spatial Laplacian operator and G̃N,P are

determined by G̃(0,1)

(
G̃N [k]

G̃P [k]

)
≡

1

3

(
4 −1
2 −2

)(
G̃(0) [k]

G̃(1) [k]

)
(6)

The functions G̃N,P are momentum dependent and they
differ in the sectors N and P. The standard Poisson equa-
tion is recovered when G̃N = GN and G̃P = 0 (ie

G̃(0) = G̃(1) = GN ).
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In a simple version of the framework, the two poten-
tials contain contributions linear in r besides the ordinary
contributions scaling as 1

r

Φa (r) = −
GaM

rc2
+

ζaMr

c2
, a = N, P (7)

This corresponds to the following running constants

G̃a [k] = Ga +
2ζa

k2
, a = N, P (8)

GN is identified as the effective Newton constant in the
inner solar system while the 3 parameters GP , ζN and
ζP measure the deviation from general relativity; ζN de-
scribes a long range modification of Newton law which
will remain small to fit planetary data; GP and ζP are
new features associated with the short and long range
behaviors of the additional potential ΦP .

Note that expressions (7-8) are not necessarily exact
for all distances or all momenta. What is needed for our
purpose is that they are correct descriptions of the true
running constants at the scales involved in the tests. In
particular, the linear increase of (7) with r has to hold at
least up to 70 astronomical units (AU) in order to explain
the Pioneer anomaly. But the same divergence continued
at much larger scales would certainly have unwanted con-
sequences for galactic astrophysics. This difficulty can be
cured by matching (7) to functions decreasing to 0 when
r → ∞. For example, (7) can be considered as an expan-
sion at r ≪ λ of Yukawa functions with a range λ larger
than 70AU. Accordingly, the infrared divergence of the
running constants (8) is cured by infrared cutoffs at a
wavevector of the order of 1/λ. This regularization does
not solve the problem of the matching of solar system
physics with larger scales but it is sufficient to discuss
phenomena within the solar system.

We now discuss the potentially observable conse-
quences of the new framework. To this aim, we
study geodesic motion in the metric (4) or, equivalently,
Hamilton-Jacobi equation for wave propagation. We de-
note by t the time coordinate, r the radius, ϕ the azimu-
tal angle and θ the colatitude and suppose the trajectory
to take place in the plane θ = π

2 . For matter waves
with a non null mass for example, we use the conserva-
tion of energy E = mc2g00

cdt
ds

and angular momentum

J = mr2sin2θg11
dϕ
ds

where ds is the invariant length ele-
ment along the motion. In the following, we will denote
by υr ≡ cdr

ds
and υϕ ≡ cr dϕ

ds
the velocities measured re-

spectively in the radial and orthoradial directions. In
a first stage, we briefly discuss the effect of a modifica-
tion of the first potential ΦN , setting ΦP to zero, and we
recover the known fact that it cannot account for the Pio-
neer anomaly. We then shift our attention to the effect of
ΦP alone. In the concluding paragraphs, we will sketch
the program of reanalyzing all gravity tests in the new
framework where ΦN can be modified and ΦP different
from zero.

A long range modification of the Newton potential ΦN

could be detected as an anomaly of the third Kepler law
on a circular orbit (υr = 0). To evaluate this effect, we
compute the square υ2

ϕ of the orthoradial velocity in the

modified theory and subtract from it the value
[
υ2

ϕ

]
st

obtained in standard theory. We denote by δυ2
ϕ the dif-

ference which measures the potential anomaly

δυ2
ϕ ≡ υ2

ϕ −
[
υ2

ϕ

]
st

≃ ζNMr (9)

This anomaly, which is proportional to ζN , is not ob-
served on the motions of planets or probes in the so-
lar system [7]. In particular, the telemetry data on
probes close to Mars are sufficient to put an upper bound
on ζN and this value is much too small to account
for the Pioneer anomaly (see section XI-B in [4]). Af-
ter a translation into the notations of the present pa-
per, the bound may be expressed on the acceleration
|ζNM | < 5× 10−13ms−2 which is thus found to be much
smaller than aP . Since a long-range modification of the
Newton potential ΦN cannot explain the anomaly, we
now consider the case where the first potential ΦN has
its standard form (ζN = 0) and focus our attention of the
effects of the second potential ΦP .

This second potential is found to affect Doppler track-
ing data of Pioneer-like probes. To evaluate this effect,
we calculate the motion of such probes in the metric (4)
and also take into account the perturbation of the prop-
agation of radio signals to and from the probes. We then
express the result as an equivalent acceleration a defined
as the time derivative of the Doppler velocity. We finally
obtain the anomaly δa ≡ a − [a]st by subtracting the
standard expression calculated by using Einstein general
relativity. As already stated, this standard expression is
supposed to describe properly the effects of gravitational
or non gravitational perturbations as well as relativistic
corrections. The anomaly is found to be proportional to
the derivative dΦP

dr
of the second potential as well as to

the square υ2
r of the radial velocity of the probes [14]

δa ≃ −2
dΦP

dr
υ2

r ≃ 2

(
ζP M +

GP M

r2

)
υ2

r

c2
(10)

We know that GP ≪ GN (see also below) and υ2
r ≪ c2,

and it follows that the term proportional to GP can be
neglected in (10). We are therefore left with the predic-
tion of a constant acceleration directed towards the Sun,
if ζP has a negative sign. Tentatively identifying this
result with the Pioneer anomalous acceleration fixes the
unknown parameter ζP M = aP c2/(2υ2

r) ≃ 0.25ms−2.
Equation (10) means that the new framework pre-

sented in this letter effectively has the capability of ac-
comodating a Pioneer-like anomaly for probes having a
large radial velocity. It also leads to new predictions, a
spectacular example being that the anomalous accelera-
tion shows a dependence versus the velocity of the probes.
The two Pioneer probes have nearly equal velocities and
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nearly equal accelerations, so that this prediction cannot
be confronted to available data. But it would be inter-
esting to check it by analyzing data recorded on Pioneer
probes [5]. This prediction also has to be kept in mind
when proposing new missions, since it points to the idea
of trying probes with different radial velocities. Equa-
tion (10) also predicts a specific r−dependence for the
anomalous acceleration when the term proportional to
GP and the variation of υ2

r on the trajectory are kept.
This prediction might be tested not only in the outer so-
lar system but also on probes flying to Mars or Jupiter,
if the sensitivity of the acceleration measurement can be
made good enough in spite of perturbations such as solar
wind and radiation pressure [4].

In the sequel of the letter, we discuss the effect of ΦP on
other gravity tests, in order to check out that the modifi-
cation of Einstein theory needed to obtain (10) does not
spoil its good agreement with these tests. A critical prob-
lem in this context is the effect of ΦP on the propagation
of light rays which certainly have large radial velocities.
In order to evaluate this effect, we compute the deflec-
tion angle θ for light rays passing near the Sun in the
metric (4) and subtract the standard value to obtain the
potential anomaly δθ ≡ θ − [θ]st as [14]

δθ ≃
2GP M

r0c2
−

2ζP Mr0

c2
L (r0) (11)

r0 is the distance of closest approach to the Sun; L is a
factor of order unity which depends logarithmically on
r0, on the distance of the observer to the Sun and on
the range λ at which the linear dependence of the metric
falls down to zero. Should ζP be set to zero, equation (11)
would be equivalent to the PPN result [1] with an Ed-
dington parameter γ determined from the ratio of grav-
ity constants GP /GN = (1 − γ). Eddington or Shapiro
tests would thus tell us that GP /GN is much smaller
than unity with a maximum value given by the upper
bound on γ − 1. The novelty in equation (11) is the
term proportional to ζP which entails that Eddington or
Shapiro tests could show an anomaly depending on the
distance r0 of closest approach to the Sun. Note that the
observation of such a dependence would open the way to
a determination of ζP and, possibly, of the cutoff range
λ. The r0−dependence in (11) constitutes a prediction
of the new framework as well as a further motivation for
high accuracy Eddington or Shapiro tests such as LA-
TOR [15] or astrometric surveys such as GAIA [16].

The present letter only constitutes a preliminary study
of the phenomenological consequences of the new frame-
work. As already stated, the modified gravity equation
naturally leads to metric perturbations characterized by
two potentials ΦN and ΦP . It is therefore necessary to
perform a new analysis of the motions of planets and
probes in the solar system [7] looking now for the com-
bined effects of these two potentials. It is only after this

new analysis that it will be possible to know whether or
not the new framework effectively passes all the gravity
tests. A key role is expected to be played by the eccen-
tricity of the orbit which is zero for circular orbits, has
already an order of magnitude of 0.1 for Mars and then
takes larger values for Pioneer probes. This also sug-
gests to perform a detailed analysis not only for the two
categories of bound and unbound orbits but also for the
flybies such as those which have been used to bring Pi-
oneer probes from the former category to the latter one
[4, 5].
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