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Abstract: We take a three dimensional Euclidian metric in toroidal coordinates and
consider the corresponding Laplace equation. The simplest solution of this equation is
taken. Based on this we build a Weyl space-time. This space-time is transformed to
cylindrical coordinates. It is shown by using ‘Mathematica’ that Weyl equations in
cylindrical coordinates are satisfied. Geodesic motion is considered along the symmetric
axis as well as along the radii of the singularity, which is the cause of the space time.

Here we present a vacuum space-time, in cylindrical coordinates due to a ring shaped
singularity. It satisfies Weyl’s equations [1], [2] for axially symmetric metrics. It was
originally found with the aid of a toroidal metric, obtained by the conformal
transformation [3],

1 . S .
z+ip= aC0t|:E(l//+i0)}. Then by a coordinate transformation it is brought into

Weyl’s form. This method of construction will be described in a paper to be published
in the near future [4]. The potential U, satisfying Laplace’s Equation in toroidal

coordinates has zero value in the disc enclosed by the ring.

The metric in toroidal form is
ds? = o2V gp? _ p2itaw-2U (d(72 n dl//z)_ezy—wd¢2

Where
1
U= (COSO‘ —COoS z//)E cos(w/2)
A=—(1/2)sinh’ (6/ 2)(1+cosh® (& /2)cos (2y))

v= log[ %cosh o —cos ://)J

1 =v+log(sinho))

This is one of Weyl’s axially symmetric metrics in a different guise. By the
coordinate transformation

(r2 +2z° —az)

v = ArcCos

(\/(r—a)z +z° \/(r+a)2 +zz)

o = ArcCosh (rz +z° +a2)

(\/(r—a)z +22y(r +ay +zz)
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this can be converted in to one of Weyl’s cylindrically symmetric metrics

ds> =e’dt’ —e* Y (dr2 +d22)—e_2Ur2d¢2

a*+ri+z?
A=— -1+
4 \/(a—r)z +zz\/(a+r)2 +z2
2(—a2+r2+22)2 a* +r*+z°

1+E[_1+ ((a—r)2 +22X(a+r)2 +ZZ)J[1+ \/(a—r)z +z7 \/(a-i-r)z +z°

—a’+r*+z°

v :_\/\/(a—r)z +Zz\/(a+r)2 +z° \/1+ \/(a—r)z +22\/(a+r)2 +z°

4 =log[r]

By using ‘Mathematica’ we can show that the following Weyl’s equations are
satisfied.
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Thus the metric 1s seen to assume the form
ds* =e*Vdt? —e?V (a’r2 + dzz)— e?Vridg*, U = U(r,z), A= /1(}",2) when
transformed to that of Weyl.

This metric has a singularity on the ringr=a, z= 0.

A coordinate free definition for the speed of a test particle will also be given.
Difficulties arose when trying to express the speed in terms of coordinates. For
example when attempting to define speed along the radii one had to try several

.. dr dr eVdr eYdr eVdr
definitions such as —, — .

dt’ ds’ dr ° eVdt’ ds

Speed will be defined as tanh ¢ where cosh ¢ is the scalar product of the 4-velocity of
the test particle with the 4-velocity of an observer stationed at the point through which
the test particle is passing. Let the coordinates of the observer at rest be (t,r,0,0).

Since r is constant the 4-velocity of the observer is given by u* = (uO,O,O,O) .The
four-velocity of the test particle is v* = (vo,vl,0,0), if it is in motion along a radius,

and v = (VO ,0,1° ,0) if on the symmetry axis (r =0,¢= const).



coshg =g, u“v" = g,,u’v" (in both cases). We have to find u" as well as v’.

Obviously, u° can be found from g, u"u" =1, and it is seen that u’ =e™. To find

dt . . . U2
v = = we use the abbreviated Lagrangian L = e*’i* —eY***#*  where the over-
s
dot represents differentiation with respect to s.
d oL oL . oL oL . . .
————=0 gives — = const, because — =0 (being a static solution).
ds ot Ot Ot

Therefore e*’i = E (say). Here E is a constant related to the initial energy of the test
particle.
v = a =Ee™
ds
cosh¢g = g u’v’ =e’’ (e’U )(Ee’w ) =e'E

Speed=tanh ¢ =/1—- E~e*

To study some of the properties of the space-time we investigate the geodesic motion
along the symmetric axis normal to the ring and along the radii emanating from the
centre of the ring.

For the purpose of obtaining the geodesics, we take the Lagrangian to be
L =it _ o2+ (,;2 +Z'2)—672UI"2¢52

Then the equations for the geodesics are

doL oL _,doL_oL_ doL o _,daL oL _,

dsoi ot dsor or o dso: oz dsdp op
We use only the first which gives us
i2.92Ut'=0, ewﬂ

ds s
The constant E is related to the energy of the particle.

=eVi=E (const).

The geodesics along the radii (z =0, ¢ = const) are given by
—e"Vdr=e (1 - E?e” % dt

and along the normal (r = 0) is given by

—e"Vdz=e" (l —E7e )% dt

If we keep ¢ =constant, z =0 then,
we get geodesic motion along a radius of the ring.



ds? = o2V df? — o2 gp2
1\ _
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e Vdr =+e? (1 —eE™? )A dt
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Here A, U are functions of r only.

For geodesic motion along the symmetry axis: (r =0),
we have a similar equation.
e’V dz

_J eY (1 —eE™ )%

t:

with A, U being functions of z only.

These two integrals give us two space-time diagrams involving (z, ) and (%, z).
Speed along the radial geodesic and (¢, r) curve

When a =1, E =1, radial speeds are given by

(1-E2e), U=Uw.



s |1 Graph of Speed versusr,for r=10to 1,
along a radial geodesic for E = 1.

This shows that by the time the rest particle reaches the periphery of the ring, its
speed approaches that of the velocity of light.

For different values of £, (a =1), we get:

ns 1.5

Graph of Speed versus r, fromr = 10 to 1, along a radial
L geodesic, for varying values of E.
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Graph of Speed versus r, from the centre
03 {(r = 0) to the periphery of the ring (r = a), along a radial
geodesic, for varying values of E.
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a3 As can be seen, for a given E, the speed remains
= constant, upto the periphery of the ring, because U = 0.
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Integrating with respect to r from 10 to 1, we get
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As can be seen, the last portion of the journey takes only an imperceptible amount of
coordinate time.



For different values of E, (a =1), we get:
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Graph of Time versusr, fromr = 10to 1,
along a radial geodesic.
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t Graph of Timme versus r, from the centre to the
n periphery of the ring (r = a = 1), along a radial geodesic.
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Speed along the normal geodesics and the (t, z) curve

The maximum speed does not reach that of light. Ultimately the test particle comes to
rest at the centre.

When a=1, E =1
Speed along the normal geodesics is given by



(1-E2e)", U=U()

Speed
1 Graph of Speed along the symmetric normal geodesic (z-axis)

— Fora=1,E=1.

Normal Symmeiric Geodesic:
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| Graph of Speed versus z, for E=1, 1.5, 2, 2.5, ... 5.
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When z=10,7=0; Solving t'[z] = — the time taken to reach from z =
1-E e
10 to z = 0 (centre) is as shown.

Graph of Time versus z, for varying E =1, 1.5, 2, ... 5

for z = 10 to 0.
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For different values of £, (a =1), we get:
b

C Graph of Time versus z, for varying E =1, 1.5, 2, ... §

o forz=10to 0.

15

10

L&

C z
ot | a4 ] Wk [ & | A4 ] & [ & | A4 ] W [ k& ] 4

] 1 2 3 4 5 3 7 a 3 10




Conclusion

The symmetric normal geodesic is well behaved, but along the radial geodesic we find
from » =10 to » =1 (close to the periphery of the ring — the singularity). Inside the
ring, from the origin (» = 0) to the periphery of the ring (» =1), the speed remains
constant for the most part. A more detailed evaluation of these geodesics might prove
to be fruitful.
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