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We demonstrate a fully self-consistent microscopic realization of a kaon condensed color-flavor
locked state (CFLK0) within the context of a mean-field NJL model at high density. The properties
of this state are shown to be consistent with the QCD low-energy effective theory once the proper
gauge neutrality conditions are satisfied, and a simple matching procedure is used to compute the
pion decay constant which is in numerical agreement with the perturbative QCD result. The NJL
model is used to compare the energies of the CFLK0 state to the parity even CFL state, and to
determine locations of the metal/insulator transition to a phase with gapless fermionic excitations
in the presence of a non-zero hypercharge chemical potential and a non-zero strange quark mass.
The transition points are compared with results derived previously via effective theories and with
partially self-consistent NJL calculations. We find that the qualitative physics does not change, but
that the transitions are slightly lower.

I. INTRODUCTION

Recently there has been interest in the structure of
matter at extremely high densities, such as might be
found in the cores of neutron stars. At large enough
densities, nucleons are crushed together and quarks be-
come the relevant degrees of freedom. The asymptotic
freedom of QCD allows one to perform perturbative cal-
culations at asymptotically high densities and it has been
established that the structure of the ground state of
quark matter is a colour superconductor (see for exam-
ple [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]). In partic-
ular, at high enough densities that the three lightest
quarks can be treated as massless, the ground state is
the colour-flavour–locked (CFL) state in which all three
colours and all three flavours participate in maximally
(anti)-symmetric pairing [4, 7, 13].

Determination of the QCD phase structure at mod-
erate densities and in the presence of non-zero quark
masses has proceeded in several ways. One approach
has been to formulate effective theories, and then to
match coefficients to perturbative calculations. Coeffi-
cients in the low-energy chiral effective theory [14] are
matched to calculations performed in high-density effec-
tive theories (HDET) [6, 15, 16] and perturbative QCD.
This allows one to determine the properties of the Gold-
stone bosons and determine the effects of small quark
masses [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Within
this framework, it has been noted that, in the presence
of a finite strange quark mass, neutral “kaons” (the light-
est pseudo-Goldstone modes at high density with the
same quantum numbers as their vacuum counterpart)
can Bose-condense in the CFL state to form a kaon-
condensed CFLK0 phase with lower condensation en-
ergy [27, 28, 29].

Unfortunately, the low-energy effective theory is only
reliable for small perturbations and at moderate den-
sities the strange quark mass is not a small perturba-
tion. A recent attempt has been made to extrapolate to
large strange quark mass (ms) [30] but this approach has
not dealt with the additional complication in condensate

structure such as allowing for different gap parameters
for each pair of quarks.

To deal with moderate quark masses, another ap-
proach has been to study Nambu–Jona-Lasinio (NJL)
models [31, 32] of free quarks with contact interactions
that model instanton interactions or single gluon ex-
change. These models are amenable to a mean-field treat-
ment and exhibit a similar symmetry breaking pattern to
QCD which results in CFL ground states [2, 3].

Within this model, one can study the effects of moder-
ate quark masses through self-consistent solutions of the
mean-field gap equations. This has led to a plethora of
phases. In particular, several analyses show a transition
to a colour-flavour locked phase with gapless fermionic
excitations (the gCFL phase). These include both NJL
based calculations [33, 34, 35, 36] and effective theory
based calculations [30, 37]. To date, the NJL calcula-
tions have excluded the possibility of kaon condensation
(see however [38] which considers kaon condensation in
the NJL model at low density), while the effective the-
ories do not consider the complicated patterns in which
the condensate parameters evolve at finite quark masses.

The goal of this paper is to show that one can combine
the analysis of the low-energy effective theories which ex-
hibit kaon condensation, with the self-consistent mean-
field analysis of the NJL model which accounts for the full
condensate structure. In particular, we use an NJL model
based on single gluon exchange to find self-consistent so-
lutions that correspond to the CFLK0 phase; we show
that these phases agree with the predictions of the low-
energy effective theory; and we determine how and where
the zero temperature phase transition to a gapless CFL
phase occurs as one increases the strange quark mass. In
addition, unlike previous work on the NJL model, our
numerical solutions are fully self-consistent: we include
all condensates and self-energy corrections required to
close the gap equations.

We first describe the patterns of symmetry breaking
that leads to the CFL and CFLK0 states (Section II)
and then present our numerical results, demonstrating
some properties of these states and determining the lo-
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cations of the zero-temperature phase transitions (Sec-
tion III). We then present a careful description of our
model (Section IV) and derive the low-energy effective
theory, paying particular attention to the differences be-
tween QCD and the NJL model (Section V). Here we
demonstrate that, for small perturbations, our numeri-
cal solutions are well described by the effective theory,
and we use our numerical results to compute the pion
decay constant fπ. We find remarkably good numerical
agreement with the perturbative QCD results. Specific
numerical details about our calculations and a full de-
scription of our self-consistent parameterization is given
in Appendix A.

We leave for future work the consideration of finite
temperature effects, the analysis of the gapless CFLK0

(gCFLK0), the inclusion of instanton effects, the inclu-
sion of up and down quark mass effects and the possibility
of other forms of meson condensation.

II. COLOUR FLAVOUR LOCKING (CFL)

QCD has a continuous symmetry group of U(1)B ⊗
SU(3)L ⊗ SU(3)R ⊗ SU(3)C. In addition, there is an ap-
proximate U(1)A axial flavour symmetry that is explicitly
broken by anomalies, but at sufficiently high densities,
the instanton density is suppressed and this symmetry is
approximately restored.

The CFL ground state spontaneously breaks these con-
tinuous symmetries through the formation of a diquark
condensate [4]

〈ψ̄c†
αaγ5ψβb〉 ∝ ∆3ǫ

αβkǫabk + ∆6(δ
α
a δ

β
b + δα

b δ
β
a ). (1)

The symmetry breaking pattern (include the restored ax-
ial U(1)A symmetry) is thus

U(3)L ⊗ U(3)R ⊗ SU(3)C → SU(3)L+R+C ⊗ Z2 (2)

where the Z2 symmetry corresponds to ψL → −ψL or
ψR → −ψR. It has been noted that the symmetry break-
ing pattern at high density (2) is remarkably similar to
that of the vacuum [39]. This has led to an identification
of the low-energy degrees of freedom in both theories.
We shall continue to use this identification, referring to
“pions” and “kaons” etc. as the Goldstone bosons in
the high density phase with the same flavour quantum
numbers as the corresponding vacuum particles.

The CFL state (1) preserves parity, and is preferred
when the anomalous breaking of the axial U(1)A is con-
sidered. Excluding this effect, there is an uncountable
degeneracy of CFL ground states with identical physi-
cal properties. These are generated from the parity even
CFL by the broken symmetry generators.

In the symmetry breaking pattern (2) there are 18 bro-
ken generators. The quarks, however, are coupled to the
eight gluons associated with the SU(3)C colour symme-
try and to the photon of the U(1)EM electromagnetism
(which is a subgroup of the vector flavour symmetry).

Eight of these gauge bosons acquire a mass through the
Higgs mechanism and the coloured excitations are lifted
from the low-energy spectrum. There remain 10 mass-
less Nambu-Goldstone excitations: a pseudoscalar axial
flavour octet of mesons, a scalar superfluid boson asso-
ciated with the broken U(1)B baryon number generator,
and a pseudoscalar η′ boson associated with broken axial
U(1)A generator. In addition, there remains one mass-
less gauge boson that is a mixture of the original photon
and one of the gluons [4, 40]. With respect to this “ro-
tated electromagnetism” U(1)Q̃ the CFL state remains

neutral [41].
The degeneracy of the vacuum manifold is lifted by the

inclusion of a non-zero strange quark mass ms. In the
absence of instanton effects and other quark masses, the
ground state is not near to the parity even CFL state (1),
but rather, is a kaon rotated state which we shall denote
CFLK0. As ms → 0 this state approaches a state on
the vacuum manifold that is a pure kaon rotation of the
parity even CFL (1).

Even in the absence of quark masses, the vacuum
manifold degeneracy is partially lifted by the anoma-
lous breaking of the U(1)A axial symmetry which we
have neglected: Instanton effects tend to disfavour kaon
condensation by favouring parity even states, and thus
delay the onset of the CFLK0 until ms reaches a crit-
ical value (possibly excluding it). The effects of the
anomaly and instanton contributions has been well stud-
ied [3, 13, 22, 42, 43] and plays an important quantitative
role in the phase structure of QCD. For the purposes of
this paper, however, we shall neglect this contribution
in order to ensure that kaon condensation occurs for ar-
bitrarily small strange quark masses. Future analyses
should take these numerically important effects into ac-
count, both in the effective theory and in the NJL model.

Non-zero up and down quark masses also tend to dis-
favour kaon condensation. Again, a quantitative analysis
should take these effects into account: we neglect them
to ensure that kaon condensation persists in our model
for arbitrarily small strange quark mass. Instanton and
the other quark mass effects open the possibility of a
much richer phase structure including the condensation
of other mesons (see for example [27, 44]).

The primary source of for kaon condensation is due to
the fact that a strange quark mass behaves in part as a
chemical potential [27, 28, 29] (see (3) and (4)). In this
paper, we also consider the addition of a hypercharge
chemical potential as this removes many complications
associated with masses and leads to a very clean demon-
stration of kaon condensation.

III. SELF-CONSISTENT SOLUTIONS

We consider four qualitatively different phases: Two
are self-consistent mean-field solutions to the NJL model
with a finite hypercharge chemical potential parameter
µY ; The other two are self-consistent mean-field solu-
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FIG. 1: Lowest lying quasiparticle dispersion relationships
about the Fermi momentum pF = µq = 500 MeV for the
CFL phase with three different values of the hypercharge
chemical. All dispersion have left-right degeneracy: we now
consider the colour-flavour degeneracy. In the top plot at
µY = 0, the bottom dispersion has an eight-fold degeneracy
and a gap of ∆0 = 25 MeV. The top band contains a single
quasi-particle pairing (ru,gd,bs) with a gap of 4∆6+2∆3 = 54
MeV. In the middle plot at µY = µc

Y /2 = 12.5 MeV, the
(rs,bu) and (gs,bd) pairs are shifting as indicated in Table I.
In the bottom plot, two pairs have become gapless marking
the CFL/gCFL transition.

tions to the NJL model with a finite strange-quark mass
parameter ms. In each of these cases, one solution cor-
responds to a parity even CFL phase and the other cor-
responds to the kaon condensed CFLK0 phase. Our nor-
malizations and a complete description of the model is
presented in Section IV. A full description of all the
parameters required to describe these phases along with
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FIG. 2: Lowest lying quasiparticle dispersion relationships
about the Fermi momentum pF = µq = 500 MeV for the
CFLK0 phase with two different values of the hypercharge
chemical. (The µY = 0 dispersions are the same as in the top
of Figure 1.) Again, all dispersion have a left-right degener-
acy. In the top plot at µY = µc

Y /2 = 12.5 MeV, the eightfold
degenerate lowest band has split into eight independent dis-
persions. To leading in the perturbation, the splitting is de-
scribed by Table I, but the lack of degeneracy indicates that
there are also higher order effects. The lower plot close to the
CFLK0/gCFLK0 transition at µY ≈ 1.20µc

Y ≈ 30 MeV. The
gapless band now contains only a single mode and is charged.

some typical values is presented in Appendix A.

A. Finite Hypercharge Chemical Potential

The CFL phase in the presence of a hypercharge chem-
ical potential corresponds to the fully gapped CFL phase
discussed in [33]. Here one models the effects of the
strange quark through its shift on the Fermi surface
pF ≈ µq of the strange quarks. This can be seen by
expanding the free-quark dispersion

√

p2 +M2
s ≈ |p| + M2

s

2µq

+ · · · (3)

or, more carefully, by integrating out the antiparticles
to formulate the High Density Effective Theory. See for
example [6, 15, 16, 26]).

These leading order effects are equivalent to adding a
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FIG. 3: Physical gap of the lowest lying excitation as a func-
tion of the hypercharge chemical potential. The dotted line
corresponds to the CFL phase: the phase transition to the
gCFL occurs at µY = µc

Y where the gap vanishes. The solid
line corresponds to the CFLK0 state. The transition to a
gapless phase is delayed by a factor of 1.21.

hypercharge chemical potential of magnitude

µY =
M2

s

2µq

. (4)

and a baryon chemical potential shift of

δµB = −M
2
s

µq

. (5)

We consider only the effect of the hypercharge chemi-
cal potential here, holding µB fixed. Note that the rel-
evant parameters here are the constituent quark mass
Ms that appears in the dispersion relation, and the cor-
rected quark chemical µq that determines the Fermi sur-
face rather than the bare quark mass parameter ms and
baryon chemical potential µs = µB/3. (This distinction
is important because our model takes into account self-
energy corrections.)

The CFL phase responds in a trivial manner to a hy-
percharge chemical potential: the quasiparticle disper-
sions shift such that the physical gap in the spectrum
becomes smaller, but none of the other physical prop-
erties change. In particular, as the hypercharge chem-
ical potential increases, the coloured chemical potential
µ8 = −µY decreases to maintain neutrality, but the val-
ues of all of the gap parameters, the self-energy correc-
tions, the densities and the thermodynamic potential re-
main unchanged until the physical gap in the spectrum
vanishes. (The apparent change in the magnitude of the
gap parameters in the first figure of [33] is due to the
shift in the baryon chemical (5) which occurs if one uses
the strange quark chemical potential shift µs rather than
a hypercharge shift µY .) The same phenomena has also
been noticed in the two-flavour case [45, 46] and is a con-

sequence of the Q̃ neutrality of the CFL state [47]. In
particular, the electric chemical potential remains zero
µe = 0 and the state remains an insulator until the onset
of the gapless modes.
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FIG. 4: Lowest lying quasiparticle dispersion relationships
about the Fermi momentum pF = µq = 500 MeV for the CFL
phase with two different values of the strange quark mass.
(The Ms = 0 dispersions are the same as in the top of Fig-
ure 1.) Qualitatively this has the same structure as Figure 1
except that middle dispersion is now split by higher order
mass effects.

As such, we can analytically identify the phase tran-
sition to the gCFL phase which occurs for the critical
chemical potential

µc
Y = ∆0 (6)

where ∆0 = ∆3 −∆6 is the physical gap in the spectrum
in the absence of any perturbations. Throughout this
paper we use parameter arbitrarily chosen so that µc

Y =
∆0 = 25 MeV to correspond with the parameter values
in [33] and [36]. We show typical quasiparticle dispersion
relations for this state in Figure 1.

The splitting of the dispersions can also be easily un-
derstood from the charge neutrality condition (41) and
the leading order effects are summarized in Table I.

After setting µ8 = −µY , the chemical potentials for the
rs and gs quarks shift by −µY whereas for the bu and bd
quarks it shifts by +µY . Thus, the (gs,bd) and (rs,bu)
pairs are the first to become gapless.

The kaon condensed hypercharge state is more com-
plicated. One can again use the appropriate charge neu-
trality conditions (41) to estimate how the quarks will be
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FIG. 5: Lowest lying quasiparticle dispersion relationships
about the Fermi momentum pF = µq = 500 MeV for the
CFLK0 phase with two different values of the strange quark
mass. (The Ms = 0 dispersions are the same as in the top
of Figure 1.) Qualitatively this has the same structure as
Figure 2.

ru gd bs rd gu rs bu gs bd

CFL 0 0 0 0 0 −1 +1 −1 +1

CFLK0 0 + 1

2
− 1

2
0 + 1

2
−1 + 1

2
− 1

2
+ 1

2

TABLE I: Leading order shifts in the chemical potentials
of the various quarks in the CFL and CFLK0 states in the
presence of a hypercharge chemical potential shift µY . This
follows directly from (41).

affected by µY , but the näıve results hold only to lowest
order. In particular, the condensates of the CFLK0 state
also vary as µY increases (see Table III). These higher
order effects break all the degeneracy between the quark
species and Figure 2 has nine independent dispersions.

We shall compare the thermodynamic potentials of
these two states later (see Figure 7), but we point out
here that the transition to a gapless colour-flavour–
locked state with kaon condensation (gCFLK0) occurs
at a larger hypercharge chemical potential than the
CFL/gCFL transition. This can be most easily seen
in Figure 3. This is in qualitative agreement with [30]
and [37], but in quantitative disagreement.

In the CFL/gCFL transition, two modes become gap-
less simultaneously: the lower branches of the (rs,bu) and
(gs,bd) pairs. One of these modes is electrically neutral
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FIG. 6: Physical gap of the lowest lying excitation as a func-
tion of the strange quark mass. The dotted line corresponds to
the CFL phase and the solid line corresponds to the CFLK0

phase. We have normalized the axes in terms of µc
Y = ∆0

for comparison with the hypercharge chemical potential case.
The CFL/gCFL transition occurs at a slightly smaller value of
M2

s /µq ≈ 45.5 MeV than the value of 46.8 MeV in [36]. This
is due to the effects of the other parameters on the quasi-
particle dispersion relations. We note that, as with µY , the
transition from the CFLK0 to a gapless phase is delayed rel-
ative to the CFL/gCFL transition, but by a slightly reduced
factor of 1.197. This is in qualitative agreement but quanti-
tative disagreement with the factor of 4/3 found in [30]. The
is most-likely the result of our fully self-consistent treatment
of the condensate parameters.

(gs,bd) and it crosses the zero-energy axis giving rise to
a “breach” in the spectrum. The other mode is electri-
cally charged: as soon as in crosses, the electric chemical
potential must rise to enforce neutrality. The state now
contains gapless charged excitations and becomes a con-
ductor. The result is that the the neutral gapless mode
has two linear dispersions while the charged gapless mode
has a virtually quadratic dispersion when electric neutral-
ity is enforced. (See [34] for a more detailed discussion).

In the CFLK0/gCFLK0 transition, a single charged
mode (pairing (rs,ug,ub)) becomes gapless. Thus, imme-
diately beyond the transition, the corresponding gCFLK0

state will also be a conductor but there will be a single
charged gapless mode with almost quadratic dispersion.
Additional modes will continue to lower until either more
modes become gapless, or a first order phase transition
to a competing phase occurs.

B. Finite Strange Quark Mass

The second pair of CFL/CFLK0 states that we con-
sider are self-consistent solutions to the gap equation in
the presence of a finite strange quark mass. Qualitatively
we expect to see similar features to the states at finite hy-
percharge chemical potential and indeed we do as shown
in Figures 4 and 5.

Quantitatively, we notice a few differences with previ-
ous analyses concerning the locations of the phase tran-
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sitions to gapless states. Our parameters have been cho-
sen to match the parameters in [36]. They find that
M2

s /µ = 46.8 MeV, but the CFL/gCFL transition hap-
pens noticeably earlier with our model at M2

s /µ = 43.9
MeV. This is due to a corresponding six-percent reduc-
tion in the condensate parameters and represents the ef-
fects of performing a fully self-consistent calculation.

Another difference concerns the appearance of gapless
modes in the CFLK0 state. This transition occurs at
M2

s /µ = 52.5 MeV in our model—a factor of 1.197 larger
than the CFL/gCFL transition. This is some ten percent
smaller than the factor of 4/3 derived in [30]. This is
likely due to the more complicated condensate structure
we consider.

IV. NJL MODEL

We base our analysis on the following Hamiltonian den-
sity for the NJL model

H =

∫

d3~p

(2π)3
ψ†

~p
(~α · ~p − µ + γ0M)ψ~p + Hint. (7)

Here we consider 9 species of quarks = 3 colours × 3
flavours: Including the relativistic structure, there are 36
quark operators in the vector ψ. The matrices µ and
M are the quark chemical potentials and masses respec-
tively.

We take the interaction to be a four-fermion contact
interaction with the quantum numbers of single gluon
exchange:1

Hint = g

∫

(ψ†γµλAψ)(ψ†γµλAψ). (8)

The Gell-Mann matrices act on the colour space and the
flavour structure is diagonal. We point out that this form
of NJL interaction has the desirable feature of explic-
itly breaking the independent colour SU(3)CL left and
SU(3)CR right symmetries that some NJL models pre-
serve. This is important because the condensation pat-
tern (1) does not explicitly link left and right particles:
Our model has the same continuous symmetries as QCD,
and the only complication to deal with is the gauging of
the single colour SU(3)C symmetry.

1 Here the matrices λA are the eight 3×3 Gell-Mann matrices and
the γµ are the Dirac matrices which we take in the chiral basis.
Our normalizations and conventions are

Tr[λAλB] = 1

2
δAB ,

γ5 = iγ0γ1γ2γ3 =

(

−1 0

0 1

)

,

γC = iγ2γ0.

We also use natural units where c = ~ = kB = 1.

Our goal here is to provide a non-perturbative model
to discuss the qualitative features of QCD at finite den-
sities. We model the finite density by working in the
grand thermodynamic ensemble by introducing a baryon
chemical potential for all of the quarks:

µ =
µB

3
1. (9)

With only this chemical potential and no quark masses,
our model has an U(3)L ⊗ U(3)R ⊗ SU(3)C continuous
global symmetry in which the left-handed quarks trans-
form as (3̄,1,3) and the right handed quarks transform
as (1, 3̄,3). In the chiral basis we have explicitly
(

ψL

ψR

)

→
(

ei(φ+θ)F∗
L ⊗ C 0

0 ei(φ−θ)F∗
R ⊗ C

)(

ψL

ψR

)

.

For an attractive interaction, this NJL model exhibits the
same symmetry breaking pattern as QCD (2) with a re-
stored axial symmetry. The difference between this NJL
model and QCD is that the NJL model contains no gauge
bosons. Thus, there are 18 broken generators which cor-
respond to massless Goldstone bosons, and none of these
is eaten. To effectively model QCD, we must remove the
extra coloured Goldstone bosons. This is done by im-
posing gauge neutrality conditions [41, 48, 49]. Once the
appropriate chemical potentials are introduced, the de-
pendence on the coloured Goldstone modes is canceled
and the low-energy physics of the NJL model matches
that of QCD.

The usual NJL model has a local interaction, but this
is not renormalizable and needs regulation. For the pur-
poses of this paper, we introduce a hard cutoff on each
of the momenta Λ~p = θ

(

Λ−‖~p‖
)

to mimic the effects of
asymptotic freedom at large momenta:

Hint =
g

(2π)9

∫

d3~pd3~p′d3~qd3~q′ ΛpΛp′ΛqΛq′×

× δ(3)(~p − ~p′ + ~q − ~q′)(ψ†
~p
γµλAψ~p′)(ψ†

~q
γµλ

Aψ~q′).

To study this model we perform a variational calculation
by introducing the quadratic model

H0 =

∫

d3~p

(2π)3

(

ψ†
~pA(~p)ψ~p + ψT

~pB~pψ~p + ψ†
~pB

†
~pψ

∗
~p

)

(10)
and then computing the following upper bound [50] on
the thermodynamic potential Ω of the full system:

Ω ≤ Ω0 + 〈H −H0〉0 . (11)

Ω0 is the thermodynamic potential of the quadratic
model and the expectation value 〈〉0 is the thermal av-
erage with respect to the quadratic ensemble defined by
H0. In principle, the quadratic model is exactly solvable,
thus the upper bound can be computed. One then varies
the parameters A and B to minimize this upper bound,
obtaining a variational approximation for the true en-
semble. In the zero-temperature limit, this is equivalent
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to simply minimizing the expectation value of the Hamil-
tonian over the set of all Gaussian states.

In practice, it is difficult to vary with respect to all pos-
sible quadratic models since the space is of uncountable
dimensionality. In this paper we restrict ourselves to min-
imizing over homogeneous and isotropic systems. This is
equivalent to performing a full self-consistent mean-field
analysis. The condition for the right hand side of (11) to
be stationary with respect to the variational parameters
is equivalent to the self-consistent gap equation.

The microscopic analysis presented in this paper con-
sists of choosing reasonable parameterizations of A

(which includes the chemical potentials, masses and re-
lated corrections) and B (which includes the gap pa-
rameters ∆) that are closed under the self-consistency
condition, and numerically finding stationary points of
this system of equations. (As A and B are arbitrary

36× 36 matrices subject only to A = A† and B = −BT ,
a full parameterization consists of 2556 parameters and
was too costly for the present author to consider. How-
ever, the parameterization chosen is quite natural and
fully closed.) Once the parameters A and B are found,
the properties of the ensemble can be computed by diag-
onalizing the quadratic Hamiltonian.

As discussed in Section VE and [41], we must impose
the appropriate gauge charge neutrality conditions. This
is done by introducing the gauge chemical potentials into
the model. The self-consistency conditions relate the
chemical potential corrections δµ to the corrected chem-
ical potentials µR = µ + δµ: The corrections δµ follow
from the computation of the self-energy. This self-energy
calculation depends only on the corrected chemical po-
tentials µR, so once the bare parameters µ are fixed, we
can vary all of the corrections δµ (and gap parameters
∆) to find a self-consistent solution.

To impose a charge neutrality condition, we instead
vary µR (along with with the other parameters) to obtain
a neutral solution (again we note that the total charge
and other correlations of the state depend only on the
corrected parameters µR). Once this solution is found, δµ
is computed and the required bare chemical potential µ =
µR−δµ determined. Despite the fact that the self-energy
corrections depend only on the corrected parameters (µR

etc.), the thermodynamic potential depends on both the
corrected and the bare parameters and so this last step
is important.

One must also be careful about which thermodynamic
potential is used to compare states when neutrality con-
ditions are enforced as we are no-longer in the grand en-
semble. The differences between the potentials of the
relevant ensembles are proportional to terms of the form
Qµ, however, so for neutrality conditions, Q = 0 and the
thermodynamic potential may still be used to compare
states.

A. CFL at ms = 0.

As an example, consider the parity even CFL state.
The self-consistency conditions are fully closed when one
includes four variational parameters. There are two gap
parameters ∆3 and ∆6 corresponding to the diquark con-
densate (1), one chemical potential correction δµB to the
baryon chemical potential and and induced off-diagonal
chemical potential µoct. The quadratic Hamiltonian (10)
can thus be expressed

H0 = ψ†
(

~α · ~p − 1
3µB − δµ

)

+ 1
2ψ

T γCγ5∆ψ + h.c.

where

[∆]αa
βb = ∆3ǫ

αβkǫabk + ∆6(δ
α
a δ

β
b + δα

b δ
β
a ), (12)

and

δµ = 1
3δµB + µoct. (13)

Most of this structure is all well-known and discussed
many times in the literature, however, there has been
no mention of the parameter µoct because most analyses
neglect the self-energy corrections.

Neglecting the correction to the baryon chemical po-
tential is reasonable since it has little physical signifi-
cance: it simply enters as a Lagrange multiplier to estab-
lish a finite density. As such, the effective common quark
chemical potential

µq = 1
3µ

eff
B = 1

3 (µB + δµB) (14)

is the relevant physical parameter defining the Fermi sur-
face. To compare states in the grand ensemble, however,
one must fix the bare rather than the effective chemical
potentials. This is what we have done in our calculations.
Numerically, we find that the corrections δµB cause µq

to vary by only a few percent as we vary the perturbation
parameters µY and ms.

There is no bare parameter corresponding to µoct.
Thus, it is spontaneously induced and should be treated
on the same footing as ∆. To see that such a parameter
must exist, consider changing to the “octet” basis using
the augmented Gell-Mann matrices

ψ̃A = 2[λA]αaψ(αa) (15)

where λ0 = 1/
√

6. In this basis, the off-diagonal con-
densate becomes diagonal with one singlet parameter
4∆6 + 2∆3 and eight octet parameters ∆6 − ∆3:

∆̃ =













4∆6 + 2∆3

∆6 − ∆3

. . .

∆6 − ∆3













(16)

It is clear that in the CFL, the singlet channel decouples
from the octet channel: there is no symmetry relating
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these and the two gap parameters are related by the nu-
merical value of the coupling g. This decoupling is also
present in the chemical potential corrections. One linear
combination corresponds to the identity: this corrects the
baryon chemical potential δµB. The other is the induced
µoct. Explicitly

[µoct]
αa

βb = µoct

(

8
∑

A=1

[λA]αa[λA]βb − 8[λ0]αa[λ0]βb

)

Numerically, we calibrate our model with this CFL solu-
tion. In particular, we chose our parameters to reproduce
the results of [36]. We use a hard cutoff at Λ = 800 MeV,
and a coupling constant chosen so that, with an effective
quark chemical potential of µq = 500 MeV one has a
physical gap in the spectrum of ∆0 = ∆3 − ∆6 = 25
MeV. This fixes the following parameter values which we
hold fixed for all of our calculations:

Λ = 800 MeV, (17a)

gΛ2 = 1.386, (17b)

µB/3 = 549.5 MeV. (17c)

With these parameters fixed, the fully self-consistent
mean-field CFL solution has the following variational pa-
rameters:

∆3 = 25.6566 MeV,

∆6 = 0.6566 MeV,

δµB/3 = −49.86 MeV,

µoct = −0.03135 MeV.

Thus, µoct is numerically suppressed and its effects can
be neglected. The physical gap in the spectrum also de-
fines the critical hypercharge chemical potential for the
CFL/gCFL transition (6):

µc
Y = ∆0 = 25.00 MeV. (19)

B. CFL at µY , ms 6= 0

Once one introduces a strange quark mass, one must
introduce additional parameters. A simple way to deter-
mine which parameters are required is to add the mass,
then compute the gap equation and see which entries in
the self-energy matrix are non-zero. By doing this for a
variety of random values of the parameters, one can de-
termine the dimension of the subspace required to close
the gap equation and introduce the required parameters.

In the case of the CFL state with non-zero hypercharge
chemical potential, one only needs to introduce the pa-
rameters µY and µ8 to ensure gauge neutrality: As dis-
cussed in III A none of the other parameters change. To
go beyond the transition into the gCFL phase, however,
or to extend the results to non-zero temperature, one
must introduce additional parameters. These include the

perturbation µY , the gauge chemical potentials µ3 and
µ8 and µe required to enforce neutrality, as well as nine
gap parameters φi, ϕi and σi that fully parameterize the
triplet and sextet diquark condensates. The additional
parameters are chemical potentials similar to µoct which
are induced by the gap equations. The full set of param-
eters in discussed in Appendix A.

Adding a strange quark mass is more complicated.
First of all, we need to introduce additional Lorentz
structure. For homogeneous and isotropic systems, there
are eight possible relativistic structures:

A = 1⊗ δµ + γ5 ⊗ δµ5 + γ0 ⊗ δm + γ0γ5 ⊗ δm5,

B = γCγ5 ⊗ ∆ + γC ⊗ ∆5 + γ0γCγ5 ⊗ κ + γ0γC ⊗ κ5.

Introducing quark masses requires one to introduce the
additional Lorentz structure κ. In total, one requires
about 20 parameters to fully parameterize the CFL in
the presence of a strange quark mass.

With the inclusion of a bare quark mass ms one in-
duces a chiral condensate 〈ψ̄ψ〉 which in turn generates
a correction to the quark mass. The resulting parameter
in A is the constituent quark mass Ms which appears
in the dispersion relationships for the quarks. It is this
constituent quark mass that must be used when calculat-
ing the effective chemical potential shift (4). Generally
the constituent quark mass is quite a bit larger than the
bare quark mass parameter ms. For example, close to
the phase transition, we have ms ≈ 83 MeV while the
constituent quark mass is Ms ≈ 150 MeV (see Table IV).
We have checked that our calculations are quantitatively
consistent with the calculations presented in [51] in this
regard.

C. CFLK0

Applying a kaon rotation to the CFL state breaks the
parity of the state, and mixes the parity even parameters
µ, m, ∆ and κ with their parity odd counterparts µ5,
m5, ∆5 and κ5. The full set of parameters and typical
numerical values is presented in Appendix A.

V. LOW-ENERGY EFFECTIVE THEORY

To describe the low energy physics of these models,
we follow a well established procedure: identify the low-
energy degrees of freedom and their transformation prop-
erties, identify the expansion parameters (power counting
scheme), write down the most general action consistent
with the symmetries and power counting, and determine
the arbitrary coefficients by matching to experiment or
another theory. In our case, we will match onto the mean-
field approximation of the NJL model. The resulting low
energy effective theory has been well studied [14, 52] but
we use this presentation to establish our conventions, and
to contrast the effective theory of QCD with that of the
microscopic NJL model.
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A. Degrees of Freedom

The coset space in the NJL model is isomorphic
to U(3)⊗U(3). This can be faithfully parameterized
through two U(3) matrices X and Y which we let these
transform as follows:

X → e2i(θV +θA)FLXC†, (20a)

Y → e2i(θV −θA)FRYC†. (20b)

Physically one can identify these with the condensates:

[X]cγ ∝ ǫabcǫαβγ 〈ψaα
L ψbβ

L 〉 , (21a)

[Y]cγ ∝ ǫabcǫαβγ 〈ψaα
R ψbβ

R 〉 . (21b)

Note that the condensation pattern X = Y = 1 is un-
broken by the residual symmetry where FL = FR = C

and also by the Z2 symmetry where θV = ±θA = π. The
latter is the reason for the extra factor of two in front of
the U(1) phases.

In QCD the degrees of freedom are similar, but one
must only consider colour singlet objects. Thus, the low-
energy theory for QCD should only include the colour
singlet combination

Σ = XY† → e4iθAFLΣF
†
R (22)

and the singlet phase θV .
The field content of the effective theories is thus:

1. Two singlet fields corresponding to the U(1) phases
θV and θA. The field associated with θV is a scalar
boson associated with the superfluid baryon num-
ber condensation. We shall denote this field H .

The field associated with θA is a pseudoscalar bo-
son associated with the axial U(1)A symmetry and
shall be identified with the η′ particle. As discussed
in Section II, the U(1)A axial symmetry symmetry
is anomalously broken in QCD and the η′ is not
strictly massless due to instanton effects, but these
are suppressed at high density. We ignore these
effects. Our NJL model thus contains no instan-
ton vertex and our low-energy theory will contain
no Wess-Zumino-Witten terms [53, 54]. It would
be interesting to include both of these terms and
repeat this calculation.

2. Eight pseudoscalar mesons πa corresponding to the
broken axial generators. These are colour singlets
and thus remain propagating degrees of freedom
in both QCD and NJL models. These have the
quantum numbers of pions, kaons and the eta and
transform as an octet under the unbroken symme-
try.

3. Eight scalar bosons φa corresponding to the bro-
ken coloured generators. These are eaten by the
gauge bosons in QCD and are removed from the
low energy theory. This gives masses to eight of

the gauge bosons and decouples them from low-
energy physics. In the NJL model these bosons
still remain as low energy degrees of freedom, but
decouple from the colour singlet physics when one
properly enforces colour neutrality.

There are additional fields and effects that should be con-
sidered part of a complete low-energy theory, but that
neglected for the purposes of this paper:

1. The appropriately “rotated electromagnetic field”
associated with U(1)Q̃ remains massless. Both the

CFL and CFLK0 states remain neutral with respect
to this field, however, and we do not explicitly in-
clude it in our formulation.

2. The leptons are not strictly massless, but the elec-
tron and muon are light enough that they may play
a role. In particular, they contribute to the charge
density in the presence of an electric chemical po-
tential and at finite temperature. For the purposes
of this paper, however, they have no role since both
CFL and CFLK0 quark matter is electrically neu-
tral at µe = 0 and we consider only T = 0. Their
only effect is to fix µQ̃ such that µe = 0 in both
insulating phases.

To be explicit, we relate all of the dimensional physical
fields H , η′, φa and πa to the phase angles through their
decay constants: H = fHH̃ , η′ = fη′ η̃′, φa = fφφ̃

a, and
πa = fππ̃

a. The realization in the microscopic theory is

ψ → exp

{

i

[

H̃α0 − η̃′γ5

2
√

6
+ φ̃ara

A + π̃afa
A

]}

ψ (23)

where

fB
L = (1 − γ5) ⊗ λB ⊗ 1/2,

fB
R = (1 + γ5) ⊗ λB ⊗ 1/2,

cA = −1⊗ 1⊗ λ∗
A,

and the corresponding realization in the effective theory
is

X = exp

{

i

[

H̃ + η̃′√
6

+

(

φ̃a

2
+ π̃a

)

τ a

]}

exp

{

i
φ̃a

2
τa

}

,

≈ exp

{

i

[

H̃ + η̃′√
6

+ (φ̃a + π̃a)τ a

]}

, (24a)

Y = exp

{

i

[

H̃ − η̃′√
6

+

(

φ̃a

2
− π̃a

)

τ a

]}

exp

{

i
φ̃a

2
τa

}

,

≈ exp

{

i

[

H̃ − η̃′√
6

+ (φ̃a − π̃a)τ a

]}

, (24b)

Σ = exp

{

i

[

√

2

3
η̃′ + 2π̃aτa

]}

. (24c)
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B. Power Counting

In addition to ΛQCD which separates the three light
quarks from the heavy quarks, there are two primary
scales in high density QCD: the quark chemical potential
µq and the gap ∆. In the NJL model there is also a cutoff
and the coupling constant: these are related by the gap
equation when one holds µ and ∆ fixed and the qualita-
tive physics is not extremely sensitive to the remaining
renormalization parameter.

Our low-energy theory is an expansion in the en-
ergy/momentum of the Goldstone fields. Thus, the ex-
pansion is in powers of the derivatives with respect to
the scales µ and ∆. In this paper, we shall only consider
leading order terms: Systematic expansions have been
discussed elsewhere (see for example [55]).

C. Kinetic Terms

To construct the low-energy theory we follow [14] and
introduce the coloured currents

J
µ
X = X†∂µ

c X → CJ
µ
XC†,

J
µ
Y = Y†∂µ

c Y → CJ
µ
Y C†,

J
µ
± = J

µ
X ± J

µ
Y → CJ

µ
±C†.

In the presence of a finite density, we no longer have
manifest Lorentz invariance and must allow for additional
constants into our spatial derivatives

∂µ

(v) = (∂0, v∂i)

to account for the differing speeds of sound. This pa-
per will be concerned with static properties, so we can
neglect these. In principle, one must also match these co-
efficients v. In QCD this matching, along with other coef-
ficients, has been made with perturbative calculations at
asymptotic densities [18, 19]. Our theory and states still
maintain rotational invariance. Thus, to lowest order we
have [14]

Leff =LΣ + LH + Lφ + · · · ,

= −
(

f2
π

4
Tr[Jµ

−J−µ] +
f2

η′ − f2
π

4 · 3 Tr[Jµ
−] Tr[J−µ]

)

+

− f2
H

12
Tr[Jµ

+] Tr[J+µ]+

−
f2

φ

4

(

Tr[Jµ
+J+µ] − 1

3
Tr[Jµ

+] Tr[J+µ]

)

+ · · · ,

= 1
2

(

∂µ

(vη′ )
η′∂(vη′ )µη

′ + ∂µ

(vπ)π
a∂(vπ)µπ

a
)

+

+ ∂µ

(vH )H∂(vH)µH + 1
2∂

µ

(vφ)φ
a∂(vφ)µφ

a + · · · .

The neglected terms are of higher order in the derivative
expansion. Note that our normalizations have been cho-
sen so that this expression is canonically normalized to

quadratic order in terms of the dimensionful fields. The
second term in LΣ represents the difference between the
singlet η′ fields and the octet πa. The decay constants are
approximately equal fη′ ≈ fπ, so this term is often omit-
ted, however, there is no explicit symmetry that couples
these fields together.

The division of Leff is natural [14, 48] because it sepa-
rates out the colour singlets: LΣ depends only on Σ for
example:

LΣ =
f2

π

4
Tr[∂µΣ†∂µΣ]+

f2
η′ − f2

π

4 · 3 Tr[∂µΣ†Σ] Tr[Σ†∂µΣ].

Thus, with the exception noted above, the lowest-order
low-energy effective theory of massless Nf = 3 QCD is

LQCD = LΣ + LH + · · · (25)

whereas the NJL model proper must include Lφ.

D. Perturbations

We shall now consider two types of perturbations: a
hypercharge chemical potential µY

µ =
µB

3
1 +

µY

3







1

1

−2






⊗ 1, (26)

and a strange quark mass

M =







0

0

ms






⊗ 1. (27)

As we shall see, the effects of chemical potential perturba-
tions are much more constrained than those of the mass
terms, so we focus on these. Detailed analyses of the ef-
fects of mass terms in QCD has been presented elsewhere
(see for example [18, 19, 26, 27, 44]).

To deal with these perturbations, we note that they
enter the microscopic Lagrangian as

LSB = ψ†
LµLψL + ψ†

RµRψR + ψ†
RMψL + ψ†

LM†ψR.

These terms break the original symmetries of the the-
ory, but one can restore these symmetries by imparting
the following spurious transformations to the masses and
chemical potentials

M → (F∗
R ⊗ C)M(F∗

L ⊗ C)†, (28a)

µL → (F∗
L ⊗ C)µL(F∗

L ⊗ C)†, (28b)

µR → (F∗
R ⊗ C)µR(F∗

R ⊗ C)†. (28c)

Furthermore, under the Z2 symmetry, we must have
M → −M. This additional symmetry excludes the linear
mass terms present in the chiral effective theory for the
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vacuum, and is responsible for the inverse mass-ordering
of the mesons [18, 19]. In is for this reason that the kaon
is the lightest particle at high density. All these sym-
metries must be restored in the effective theory, thus we
are only allowed to couple the parameters to the fields in
such a way as to preserve the global symmetries. To low-
est order, this severely limits the possible terms allowed
in the effective theory.

In the case of the chemical potentials, we can go one
step further by noting that the perturbations always ap-
pears in combination with the time derivative

L = ψ†(i∂0 + µ)ψ + · · · . (29)

One can thus promote the chemical potentials to a spuri-
ous temporal component of a gauge field and render the
symmetries local in time:

µ → (F∗ ⊗ C)
(

µF + i∂0

)

(F∗ ⊗ C)†. (30)

The effective theory must also maintain these local sym-
metries. One concludes that the chemical potential per-
turbations can only appear through the introduction of
covariant derivatives in the effective theory. In particular,
consider adding independent colour and flavour chemical
potential terms:

µ = µF ⊗ 1 + 1⊗ µC . (31)

In this case, the covariant time derivatives for the effec-
tive theory are

∇0X = ∂0X + iµF X + iXµ
†
C , (32a)

∇0Y = ∂0Y + iµF Y + iYµ
†
C , (32b)

∇0Σ = ∂0Σ + i[µF ,Σ], (32c)

where we have assumed that µF = µ
†
F and µC = µ

†
C to

derive the last equation. Thus, the static potential in the
effective theory is

V =
f2

π

2

(

Tr[Σ†µF ΣµF ] − Tr[µ2
F ]
)

+

−
f2

φ

2
Tr

[

(

X†µF X + Y†µF Y + 2µC

)2
]

+

− f2
H

3

(

Tr[µF ] + Tr[µC ]
)2

+

−
f2

φ

6

(

Tr[µF + µC ]
)2

+ · · · (33)

E. Charge Neutrality

As discussed in [41, 48, 49], the gauge invariance of
QCD implies that homogeneous states must be colour
neutral. This arises through tadpole diagrams that act as
static colour sources A0

C,~p=0 that ensure colour neutral-
ity. These sources enter the NJL calculation as Lagrange
multipliers to enforce neutrality.

One can see explicitly how these arise in the context of
the effective theory. The gauge fields effect the local sym-
metry and thus couple through the derivatives in exactly
the same way as the spurion coloured chemical poten-
tials: µC ∝ gsA

0
C . Enforcing gauge-invariance induces

an effective coloured chemical potential that makes (33)
stationary with respect to variations of the gauge field,
and thus equivalently,with respect to traceless variations
of µC . Thus, we see that, to lowest order [14, 48, 49]

µC = − 1
2

(

X†µF X + Y†µF Y
)

. (34)

Inserting this into the (33), and considering only traceless
perturbations, we see that the colour dependence drops
out of the effective theory and we are left with the static
effective potential involving only the colour singlet fields:

V =
f2

π

2

(

Tr[Σ†µF ΣµF ] − Tr[µ2
F ]
)

+ · · · . (35)

In order to reproduce the physics of this in the NJL
model, however, we must remove the coloured degrees
of freedom. This is done by introducing colour chemical
potentials to the NJL model as Lagrange multipliers and
using them to impose colour neutrality [41, 48, 49]. This
removes the colour dependence in the NJL model to all
orders in the same way as it removes the colour depen-
dence in (34) to lowest order. (In general, it is not suffi-
cient to impose colour neutrality: one must also project
onto colour singlet states (as well as states of definite
baryon number). This projection is important for small
systems, but likely has negligible cost for thermodynam-
ically large systems such as neutron stars. See [56] for an
explicit demonstration of this in the two-flavour case.)

The quarks also couple to the photon, and so we also
must enforce electric neutrality. Enforcing electromag-
netic gauge invariance will likewise induce an electric
chemical potential µe that ensures electric neutrality. It
turns out that both the CFL and the CFLK0 quark mat-
ter are neutral under a residual charge Q̃ (both are Q̃
insulators). This means that one has some freedom in
choosing the chemical potentials used to enforce neutral-
ity. In particular, prior to the onset of gapless modes,
one may choose these combinations so that µe = 0. This
is naturally enforced by including charged leptons in the
calculation.

Once a charged excitation becomes gapless and the ma-
terial becomes a conductor and a non-zero µe is required
to enforce neutrality. The phase transition to the gCFL
and gCFLK0 is defined by exactly such a charged excita-
tion. In this paper, we shall only consider the insulating
phases, and thus simply set µe = 0. For further discus-
sions of the metal/insulator properties of the CFL and
gCFL we refer the reader to [33, 35, 36].
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F. Kaon Condensation

We are now in a position to argue for the existence of a
kaon condensed state. Consider performing an axial K0

rotation on the parity-even CFL state. This is effected
using (23) in the microscopic theory and using (24) in
the effective theory with the parameter π̃6 = θ. Such a
state is now described by

Σ = e2iθτ6 =







1

cos(θ) i sin(θ)

i sin(θ) cos(θ)






. (36)

In the presence of a hypercharge chemical potential, the
effective potential becomes [27, 28, 29]

V (θ) =
f2

πµ
2
Y

2

(

cos2(θ) − 1
)

+ · · · . (37)

We see that this has a minimum for θ = ±π/2: this is
the state with maximal K0 condensation. We can also di-
rectly compute the difference in the thermodynamic po-
tential densities between the CFL state and the CFLK0

state:

ΩCFLK0 − ΩCFL = −f
2
πµ

2
Y

2
. (38)

Armed with this relationship, we can now turn to the
microscopic calculation and determine the coefficient fπ.
In Figure 7 we plot our numerical results so that the
linear relationship (38) is evident. From the slope of the
relationship we find that

fπ ≈ 0.21µq. (39)

We note that this is in remarkably good numerical agree-
ment with the perturbative QCD result [18, 19] of fπ =
0.209µq. This must be somewhat fortuitous, as the mod-
els are very different, but it gives encouraging support
to the use of the NJL model to study QCD. There are a
couple of other consequences that follow directly from the
effective theory. One is the value of the coloured chemical
potentials required to enforce neutrality. In our micro-
scopic model, we have fixed the gauge (unitary gauge) by

setting X = Y† =
√

Σ for the axial rotations. The CFL
state has X = Y = 1 while the CFLK0 state has

X = Y† =
1√
2







√
2

1 i

i 1






. (40)

From (34) we have the following relationships required to
enforce neutrality

µ8 = −µY , µ3 = 0, (CFL), (41a)

µ8 = −1

4
µY , µ3 = −1

2
µY , (CFLK0). (41b)

We plot these relationships in Figure 8. Note that they

(Ω
K

0
−

Ω
C

F
L
)/

(µ
q
µ

c Y
)2

(µY /µc
Y )2

0

0

−0.01

−0.02

−0.03

−0.04
0.5 1.0 1.5

FIG. 7: Numerical difference in energy densities between
the kaon condensed CFLK0 state and the CFL state at fi-
nite hypercharge potential µY obtained from our microscopic
NJL calculation. The units are scaled in terms of the quark
chemical potential µq = 500 MeV and the critical hypercharge
chemical potential µc

Y = 25 MeV. The quantities plotted were
chosen so that the relationship will be linear if our calculation
agrees with the effective theory result (38). The slope of the
line is m = −f2

π/2µ2

q ≈ −0.022 from which we can determine
the effective theory parameter fπ ≈ 0.21µq . This is in remark-
ably good numerical agreement with the perturbative QCD
result fπ ≈ 0.209µq [18, 19]. The dashed extension shows the
comparison between the CFLK0 potential and the CFL po-
tential, but beyond 1.0, the CFL becomes the gCFL and the
energy dependence changes. We have not calculate the gCFL
potential in this paper, but plot this extension to emphasis
that the CFLK0 persists beyond the CFL/gCFL transition
point at 1.0.

only hold for small perturbations where the effective the-
ory is valid: this plot also demonstrates a departure from
the lowest order effective theory as the perturbation is in-
creased.

As a final demonstration of the effective theory, we
calculate the hypercharge density. This is obtained by
varying the thermodynamic potential with respect to the
hypercharge chemical potential:

nY = − ∂Ω

∂µY

≈ −f2
πµY (cos2(θ) − 1). (42)

There should be no hypercharge density in the CFL state
and a density of nY = f2

πµY in the CFLK0 state. In-
deed, the CFL supports no hypercharge density with
nu = nd = ns while the CFLK0 does. This is shown
in Figure 9 and provides another method of extracting
fπ = 0.21µq.

G. A Note on the Meaning of V (θ)

We make a few remarks here about the meaning of
the effective potential V (θ). In particular, one might be
tempted to try and compute the functional form of V (θ)
in the microscopic theory to facilitate matching with the
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FIG. 8: Chemical potentials required by the NJL model to
enforce colour neutrality in the CFLK0 phase with finite hy-
percharge chemical potentials. Note that the effective theory
relationship (41) is satisfied from small chemical potentials.
The linear deviation seen here reflects the missing terms in the
effective theory that are of higher order in the perturbation
µY .

n
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/
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c Y
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2 q
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FIG. 9: Hypercharge density of the CFLK0 state in the pres-
ence of a hypercharge chemical potential µY as obtained from
our microscopic NJL model calculation. The units are scaled
as in Figure 7 so that the relationship will be linear if the
NJL model calculation agrees with the effective theory pre-
diction (42). By determining the slope of this relationship we
have another way of determining the coefficient fπ in the ef-
fective theory. The slope is f2

π/µ2

q ≈ 0.045 which agrees with
our previous determination of fπ ≈ 0.21µq .

effective theory. Such an approach will generally fail be-
cause one is allowed to pick an arbitrary parameteriza-
tion of the Goldstone fields as long as they leave the ki-
netic terms unaltered [57, 58]. Physical quantities must
be invariant under this change of parameterization: thus
the spectrum about the minimum, densities, and energy
differences are reasonable quantities to compare in each
theory. The general form of the effective potential away
from the stationary points, however, is rather arbitrary.

As an example: consider starting with the parity even
CFL state in the presence of a finite µY . This state
corresponds to a stationary point of the effective poten-
tial and is a self-consistent solution to the gap-equations.

One can then form a continuum of “kaon rotated” states
|θ〉 by applying the broken symmetry generators to this
state. One might expect to find V (θ) by computing the
energy of these states, but instead one finds an expres-
sion that is only valid locally about the stationary point.
The reason is twofold: First, there is not a unique “kaon
rotated” state |θ〉. This state has many other parame-
ters corresponding to other “directions” (such as the gap
parameters ∆, the chemical potential corrections etc.)
The only way to uniquely determine these is to solve
the gap-equations, and these only have well-defined so-
lutions at stationary points. Second, the generators of
the pseudo-Goldstone bosons in the presence of pertur-
bations are not the same as the generators of the true
Goldstone bosons in the unbroken model: the pseudo-
Goldstone bosons have some admixture of these other
“directions”.

This becomes even more evident when you analyze the
CFLK0 state with a large perturbation: one can try to
“undo” the kaon rotation by applying the appropriate
symmetry generators to minimize the parity violating
condensates, but one finds that there is no way to do
this. One must also transform the other parameters in
order convert a CFLK0 state back to a parity even CFL
state.

VI. CONCLUSION

We have explicitly found self-consistent solutions
within a microscopic NJL model exhibiting the feature of
kaon condensation in a colour-flavour–locked state. Us-
ing these solutions, we have demonstrated that by prop-
erly enforcing gauge neutrality, one can remove the extra-
neous coloured degrees of freedom from the NJL model
and effectively model kaon condensation in high-density
QCD. In particular, the microscopic calculations can be
matched onto the low-energy effective theory of QCD.
We determined fπ = 0.21µq which is in remarkably good
numerical agreement with the perturbative QCD result.

Furthermore, our solutions are fully self-consistent: no
approximations have been made beyond the mean-field
approximation and restricting our attention to isotropic
and homogeneous states. We find that our results
agree qualitatively with both the expected properties
of the CFLK0 phase based on effective theory calcula-
tions, and with the previous numerical calculations of
the CFL/gCFL transition.

Quantitatively we find that the phase transitions oc-
cur at slightly smaller parameter values than previously
found in the literature. Concerning the CFL/gCFL tran-
sition, we find that the gap parameters are reduced by a
few percent compared with those presented in [36], and
subsequently, the critical Ms is also a few percent lower.
Concerning the CFLK0/gCFLK0 transition, we find that
the transition occurs about a factor of 1.197 higher than
the CFL/gCFL transition. This is in qualitative agree-
ment but quantitative disagreement with the factor of
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4/3 calculated in [30].
The next step is to use this microscopic model to de-

termine the phase structure of high-density QCD in the
region where the gapless modes appear. We suspect that
the gCFLK0 state will survive somewhat longer than the
gCFL state on account of its lower condensation energy,
but a quantitative comparison is required. Extrapola-
tion to finite temperature is also a trivial extension in
our formalism.

A somewhat more challenging direction is to consider
the effects of instantons and finite up and down quark
masses and investigate other forms of meson condensa-
tion. Preliminary investigations indicate, however, that
the number of parameters required to close the gap equa-
tions in the presence of arbitrary meson rotations may be
prohibitively large to continue with fully self-consistent

calculations. This should still be tractable with carefully
made approximations.
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APPENDIX A: FULL PARAMETERIZATION

In this appendix, we give the full parameterization
used to analyze the K0 condensed states. First, we must
introduce a full set of diagonal chemical potentials. One
approach would be to introduce the 9 individual quark
chemical potentials, but certain linear combinations cou-
ple to relevant physics. We fix the overall density by
fixing the baryon chemical potential µB. Then we must
enforce gauge neutrality, so we introduce µe which cou-
ples to the electromagnetic field, and the diagonal colour
chemical potentials µ3 and µ8. The rest of the chemi-
cal potentials are chosen to be orthogonal to these. Here
then are the diagonal elements of the diagonal chemical

potentials expressed as tensor products of the flavour and
colour structure :

µB × [1, 1, 1] ⊗ [1, 1, 1]/3, (A1a)

µe × [2,−1,−1]⊗ [1, 1, 1]/3, (A1b)

µ3 × [1, 1, 1] ⊗ [1,−1, 0]/2, (A1c)

µ8 × [1, 1, 1] ⊗ [1, 1,−2]/3, (A1d)

µf × [0, 1,−1]⊗ [1, 1, 1], (A1e)

µe3 × [2,−1,−1]⊗ [1,−1, 0], (A1f)

µe8 × [2,−1,−1]⊗ [1, 1,−2], (A1g)

µf3 × [0, 1,−1]⊗ [1,−1, 0], (A1h)

µf8 × [0, 1,−1]⊗ [1, 1,−2]. (A1i)

An alternative set of chemical potentials includes the hy-
percharge chemical potential µY instead of µf . These are
no longer orthogonal, but are still linearly independent.

µB × [1, 1, 1] ⊗ [1, 1, 1]/3, (A2a)

µe × [2,−1,−1]⊗ [1, 1, 1]/3, (A2b)

µ3 × [1, 1, 1] ⊗ [1,−1, 0]/2, (A2c)

µ8 × [1, 1, 1] ⊗ [1, 1,−2]/3, (A2d)

µY × [1, 1,−2]⊗ [1, 1, 1]/3, (A2e)

µe3 × [2,−1,−1]⊗ [1,−1, 0], (A2f)

µe8 × [2,−1,−1]⊗ [1, 1,−2], (A2g)

µf3 × [0, 1,−1]⊗ [1,−1, 0], (A2h)

µf8 × [0, 1,−1]⊗ [1, 1,−2]. (A2i)

The diagonal mass corrections (chiral condensates) do
not couple to any external physics, so we simply use the
nine quark mass corrections (δmur, δmug, δmub, δmdr,
δmdg, δmdb, δmsr, δmsg, δmsb).

The rest of the parameters are described in the fol-
lowing matrices. These appear more condensed when ex-
pressed in the basis described in [36] where the quarks are
ordered (ru, gd, bs, rd, gu, rs, bu, gs, bd). In this basis,
the matrices corresponding to the variational parameters

A = 1⊗ δµ + γ5 ⊗ δµ5 + γ0 ⊗ δm + γ0γ5 ⊗ δm5,

B = γCγ5 ⊗ ∆ + γC ⊗ ∆5 + γ0γCγ5 ⊗ κ + γ0γC ⊗ κ5.

are
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.

With these parameters, the self-consistency conditions
are closed for arbitrary strange quark mass, arbitrary
hypercharge chemical potentials and maximal K0 con-
densation.

The parity even CFL state with no mass or hyper-
charge is expressed in terms of this parameterization as
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ϕ1 = ϕ2 = ϕ3 = (∆3 + ∆6)/2, (A3a)

φ1 = φ2 = φ3 = (∆6 − ∆3)/2, (A3b)

σ1 = σ2 = σ3 = ∆6, (A3c)

µϕ1 = µϕ2 = µϕ3 = −3µoct, (A3d)

µe3 = 3µe8 = −µf3 = µf8 = −3µoct/4. (A3e)

In Tables II, III, IV, and V we give the numerical values
of the parameters for each of the states displayed in Fig-
ures 1, 2, 4, and 5 respectively. We only list the non-zero
parameters: the other parameters are zero.

µY = 0.50µc
Y µY = µc

Y

Param. Bare Correction Bare Correction

µB/3 +549.5 −49.86 +549.5 −49.86

µoct 0 −0.031352 0 −0.031352

µY +8.3333 0 +16.667 0

µ8 −12.5 0 −25 0

∆3 0 +25.657 0 +25.657

∆6 0 +0.6566 0 +0.6566

TABLE II: Parameters required for a self-consistent parity-even CFL solution in the presence of a hypercharge chemical
potential. These values correspond to the dispersions shown in Figure 1. All values are in MeV. The first column labeled
“Bare” gives the fixed bare parameters that enter the Hamiltonian (7). The column labeled “Correction” is the contribution
from the self-energy. The sum of the columns is the value that enters the quadratic Hamiltonian (10).
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µY = 0.50µc
Y µY = 1.20µc

Y

Param. Bare Correction Bare Correction

µB/3 +549.5 −49.86 +549.5 −49.88

µY +8.3333 −0.71216 +20 −1.7279

µe 0 +0.53412 0 +1.296

µ3 −6.4775 0 −16.347 0

µ8 −3.2387 0 −8.1737 0

µe3 0 +0.024225 0 +0.027874

µe8 0 +0.008075 0 +0.0092913

µf3 0 +0.03598 0 +0.084759

µf8 0 +0.011993 0 +0.028253

µϕ1 0 +0.046996 0 +0.046645

µϕ2 = −µα3 0 +0.11904 0 +0.19693

µϕ3 = −µα2 0 +0.016921 0 −0.047247

µ1

φ 0 +0.046996 0 +0.046645

µβ1 0 −0.11474 0 −0.27501

µγ11 0 −0.088627 0 −0.14524

µγ12 0 −0.0030702 0 +0.065741

µγ 0 −0.046996 0 −0.046645

φ1 0 −12.788 0 −12.605

φ2 = β3 0 −8.5224 0 −8.1117

φ3 = β2 0 −9.1815 0 −9.7022

ϕ1 0 +12.788 0 +12.605

ϕ2 = α3 0 +8.9885 0 +8.5733

ϕ3 = α2 0 +9.6384 0 +10.138

σ1 0 +0.6442 0 +0.58464

σ2 = γ11 = −ν1,1 0 +0.3224 0 +0.3154

σ3 = γ12 = −ν1,2 0 +0.33499 0 +0.34499

γ 0 +0.33217 0 +0.35

TABLE III: Parameters required for a self-consistent CFLK0 solution in the presence of a hypercharge chemical potential.
These values correspond to the dispersions shown in Figure 2. All values are in MeV. The first column labeled “Bare” gives the
fixed bare parameters that enter the Hamiltonian (7). The column labeled “Correction” is the contribution from the self-energy.
The sum of the columns is the value that enters the quadratic Hamiltonian (10).
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M2

s /(2µ) = 0.50µc
Y M2

s /(2µ) = 0.91µc
Y

Param. Bare Correction Bare Correction

µB/3 549.5 −48.88 549.5 −48.11

µ8 −12.70 0 −22.84 0

µe3 = µf3 0 +0.022625 0 +0.021901

µe8 0 +0.0074566 0 +0.0071565

µf8 0 +0.02237 0 +0.02147

µϕ1 = µϕ2 0 +0.08899 0 +0.084961

µϕ3 0 +0.090501 0 +0.087602

mur = mdg 0 +0.15841 0 +0.20043

mug = mdr 0 +0.17321 0 +0.21904

mub = mdb 0 +0.15667 0 +0.19825

msr = msg 61.868 +50.199 83.48 +67.159

msb 61.868 +50.25 83.48 +67.223

mϕ1 = mϕ2 0 +0.026561 0 +0.033859

mϕ3 0 −0.0148 0 −0.018617

φ1 = φ2 0 −12.009 0 −11.62

φ3 0 −12.292 0 −12.123

ϕ1 = ϕ2 0 +12.636 0 +12.224

ϕ3 0 +12.912 0 +12.715

σ1 = σ2 0 +0.62012 0 +0.59171

σ3 0 +0.63986 0 +0.62619

φ0

1 = φ0

2 0 −0.48922 0 −0.63474

φ0

3 0 −0.0017262 0 −0.0021545

ϕ0

1 = ϕ0

2 0 +0.52844 0 +0.68527

ϕ0

3 0 +0.0017302 0 +0.0021599

σ0

1 = σ0

2 0 +3.9703 × 10−6 0 +5.4299 × 10−6

σ0

3 0 +0.07904 0 +0.10243

TABLE IV: Parameters required for a self-consistent parity even CFL solution in the presence of a strange quark mass. These
values correspond to the dispersions shown in Figure 4. All values are in MeV. The first column labeled “Bare” gives the fixed
bare parameters that enter the Hamiltonian (7). The column labeled “Correction” is the contribution from the self-energy. The
sum of the columns is the value that enters the quadratic Hamiltonian (10). For example, the CFL/gCFL transition occurs for
the right set of data with a bare (current) strange quark mass of 83.48 MeV. This corresponds to a constituent quark mass of
83.48 + 67 ≈ 150 MeV. (Note that there is a slight difference for the blue constituent quark masses because of the presence of
the coloured chemical potential µ8 required to enforce neutrality.)
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M2

s /(2µ) = 0.50µc
Y M2

s /(2µ) = 0.94µc
Y

Param. Bare Correction Bare Correction

µB/3 549.5 −48.89 549.5 −47.77

µ3 −6.5576 0 −15.025 0

µ8 −3.2788 0 −7.5123 0

µf 0 −0.53573 0 −1.1693

µe3 0 +0.02356 0 +0.026654

µe8 0 +0.0078532 0 +0.0088846

µf3 0 +0.035587 0 +0.074784

µf8 0 +0.011862 0 +0.024928

µϕ1 = µφ1 0 +0.044733 0 +0.042397

µϕ2 = −µα2 0 +0.1158 0 +0.17683

µϕ3 = −µα2 0 +0.015032 0 −0.038271

µβ1 0 −0.11442 0 −0.24587

µγ11 0 −0.08617 0 −0.12827

µγ12 0 +0.00075569 0 +0.061875

µγ 0 −0.044682 0 −0.042472

mug = −mub 0 +0.0077325 0 +0.0095385

mdr 0 +0.17078 0 +0.22338

mdg = mdb 0 +0.15518 0 +0.20297

msr 61.312 +50.167 90.7 +74.003

msg = msb 61.312 +50.223 90.7 +74.135

mϕ1 = mφ1 0 +0.013365 0 +0.018675

mϕ2 = mα3 0 +0.029377 0 +0.061944

mϕ3 = mα2 0 −0.010687 0 −0.013567

mβ1 0 +0.0077556 0 +0.0095626

mγ 0 +0.012492 0 +0.017538

φ1 = ϕ1 0 −12.285 0 −11.546

φ2 = β3 0 −8.1723 0 −7.4092

φ3 = β2 0 −9.0397 0 −9.3091

ϕ2 = α3 0 +8.6177 0 +7.8284

ϕ3 = α2 0 +9.4703 0 +9.6916

σ1 0 +0.60697 0 +0.51362

σ2 = −ν1,1 0 +0.30401 0 +0.27598

σ3 = −ν1,2 0 +0.32645 0 +0.32406

γ11 0 +0.30374 0 +0.2753

γ 0 +0.31778 0 +0.3165

γ12 0 +0.32019 0 +0.31079

φ0

1 = −ϕ0

1 0 −0.50457 0 −0.69763

φ0

2 = −β0

3 0 −0.33206 0 −0.44568

φ0

3 = β0

2 0 −0.00074842 0 −0.0012669

ϕ0

2 = −α0

3 0 +0.35979 0 +0.484

ϕ0

3 = −α0

2 0 +0.00066005 0 +0.00096068

σ0

2 = −ν0

1,1 0 +1.7078 × 10−5 0 +1.0929 × 10−5

σ0

3 = −ν0

1,2 0 +0.040488 0 +0.058667

γ0 0 +0.019714 0 +0.02867

TABLE V: Parameters required for a self-consistent CFLK0 solution in the presence of a strange quark mass. These values
correspond to the dispersions shown in Figure 5. All values are in MeV.


