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Abstract

It is pointed out that the heavy singlet neutrinos characteristic of
leptogenesis develop asymmetries in the abundances of the two helicity
states as a result of the same mechanism that generates asymmetries
in the standard lepton sector. Neutrinos and standard leptons inter-
change asymmetries in collisions with each other. It is shown that an
appropriate quantum number, B − L′, combining baryon, lepton and
neutrino asymmetries, is not violated as fast as the standard B − L.
This suppresses the washout effects relevant for the derivation of the
final baryon asymmetry. One presents detailed calculations for the pe-
riod of neutrino thermal production in the framework of the singlet
seesaw mechanism.
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1 Introduction

Leptogenesis is an attractive way of generating the baryon number of the
Universe [1]. The main idea put forward by Fukugita and Yanagida [2, 3, 4]
is that a lepton number asymmetry can be produced in the decays of heavy
singlet neutrinos into leptons and Higgs bosons and such an asymmetry
is partially transferred to the baryon sector through electroweak sphaleron
processes [5] that violate B and L but not B − L. The mechanism requires
non-conservation of lepton number and CP provided by neutrino Majo-
rana masses and complex Yukawa couplings. Both masses and couplings
form the well known singlet seesaw model [6] - [10] of light neutrino masses
and thus establish a close relationship between baryogenesis and low energy
phenomenology [11] - [26]. This connection contributed for the present wide
interest in leptogenesis.

The calculation of the final baryon asymmetry has been done in the
literature with increasing levels of accuracy [14, 15, 21], [25] - [30] but the
main elements have remained the following. Singlet neutrino reactions are
not symmetric under CP due to non-trivial complex Yukawa couplings in
the neutrino mass eigenstate basis. Departure of neutrino densities from
thermal equilibrium values are a necessary condition [31] to obtain net lepton
asymmetry sources. This occurs if neutrinos are not produced in the inflaton
decay but only gradually from active lepton and Higgs boson collisions.
It occurs also to some extent when any of the neutrino species undergoes
the transition to the respective non-relativistic temperature epoch. Weak
sphaleron processes transform a fraction of the generated B −L asymmetry
into baryon number. The final B − L and baryon asymmetries depend on
lepton number violating reactions whose net effect is to dissipate B−L. They
include the reactions φ̄ φ̄ → lilj, φ̄ l̄j → φ li, l̄il̄j → φφ, that violate lepton
number by two units, but also processes that violate standard lepton number
by one unit [3] such as top quark and electroweak gauge boson scatterings
like t̄ qt → Nali, φ̄ W → Nali and φ̄ B → Nali. Neutrino number densities
and the set of standard lepton, quark and Higgs boson number asymmetries
obey a system of coupled Boltzmann equations that is necessary to integrate
to derive the final (present) B − L asymmetry.

And here comes the main point of this paper. This system is incomplete
because, contrary to what has ever been assumed, the two helicity states of
singlet Majorana neutrinos do not have exactly the same abundances. We
make the case that leptogenesis mechanisms naturally generate asymmetries
in the two neutrino helicity state abundances, in the same way as the stan-
dard lepton asymmetries, and that the neutrino helicity asymmetries play
a role in the system of Boltzmann equations that govern the evolution and
transport of particle asymmetries, lepton number in particular, and there-
fore contribute to the determination of the final B − L asymmetry as a
function of the fundamental parameters of the theory. We present explicit
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calculations in the framework of the singlet seesaw mechanism.
In next section we review some of the properties of this model that are

relevant for leptogenesis in relation with the light neutrino mass spectra [32,
33, 34] as indicated by solar [35]-[41], atmospheric [42, 43, 44] and terrestrial
neutrino experiments [45, 46]. In section 3 we introduce the concept of
neutrino helicity asymmetries and discuss their relevance for the transport
of lepton number. An appropriate quantum number B − L′ is proposed
to replace the usual B − L difference. In section 4 we calculate explicitly
the lepton and neutrino asymmetries generated during the phase of singlet
neutrino thermal production. This was presented in a brief fashion in a
meeting [47]. Here we give a complete account of the work and improve the
integrations over phase space by including Pauli blocking and lepton thermal
mass effects in the numerical calculations. The Higgs boson thermal mass
had already been taken into account. In section 5 we study the washout
processes and evaluate the damping rate of B − L′. We compare with the
traditional treatment without neutrino helicity asymmetries and take the
appropriate lessons. The main results are summarized in the final section.

2 Seesaw model

The singlet seesaw mechanism [6] adds to the standard model singlet (left-
handed) neutrinos, Na, with heavy Majorana masses and Yukawa couplings
with the standard lepton and Higgs doublets, li and φ, of the form

hialiNaφ +
1

2
MaNaNa + H.C. . (1)

Spontaneous breaking of SU(2) × U(1) yields the light neutrino mass matrix
(v = 〈φ0〉)

mij = −(hM−1hT )ij v2 . (2)

The proper decay rate of Na into leptons and Higgs is given by

Γ0
Na

=
(h†h)aa

8π
Ma , (3)

if one ignores thermal effects. Delayed decay occurs when the ratio to the
Hubble expansion rate H at the temperature T = Ma,

Ka =
Γ0

Na

H(T=Ma)
, (4)

is small. In the radiation era, H = 1.66 g
1/2
∗ T 2/MP , where g∗ denotes the

number of relativistic degrees of freedom, 107.5 in the standard model. It is
enough to compare the sum

K =
∑

Ka = (103 eV−1)Tr[hM−1h†]v2 (5)
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with the light neutrino mass scale Tr[m] to conclude that the delayed decay
condition, Ka < 1, is in general in conflict with the atmospheric neutrino
mass gap [42], ∆m2 ≈ 2.5 · 10−3 eV2, which implies K > 50. Strictly speak-
ing, the delayed decay scenario only requires that the lightest of the heavy
neutrinos satisfies Ka < 1. But that is not the most natural picture, in
particular if light neutrinos are quasi-degenerate. In section 4 we will as-
sume that all parameters Ka are large, of the order of 50 or more, which has
the effect that singlet neutrinos enter in thermal equilibrium at relativistic
temperatures Ta ≫ Ma.

3 Neutrino helicity asymmetries

Sterile neutrino Yukawa couplings liNaφ conserve total lepton number, LT ,
assigned as L = −1 for left-handed neutrino fields, Na, and L = +1 for
the right-handed neutrino conjugate fields N̄a. Neutrino Majorana masses
break lepton number but it is clear that in the ultrarelativistic limit the
masses are negligible and neutrinos and antineutrinos may have unequal
abundances and symmetric chemical potentials like any other particles. In
that case neutrinos carry lepton number that can be exchanged between
them and standard leptons in collisions mediated by Yukawa interactions.
The Majorana masses do not change this completely. One faces a similar
problem at defining lepton number of Majorana mass solar or atmospheric
neutrinos, or neutrino lepton asymmetries at the time of Big Bang Nucle-
osynthesis [48]. The main difference is that they deal with standard active
neutrinos and not necessarily sterile neutrinos. Free massive neutrino states
are solutions of the Dirac equation that can be discriminated as spin eigen-
states and in particular as helicity eigenstates. The ± helicity eigenstates
spinors satisfy the relation

u ū =
1

2

(

1 ± γ5
E − M γ0

p

)

(6 p + M) , (6)

where E is the neutrino energy, p the momentum and M the mass. When
neutrinos are ultrarelativistic, helicity and chiral states are almost identical
and their lepton number is maximal (±1). For an arbitrary neutrino state
the lepton number current density is evaluated as the expectation value

Jµ
L =

〈

N̄γµγ5N
〉

=
1

2
〈χ̄γµγ5χ〉 , (7)

where N is either a left-handed chiral field Na or its conjugate N̄a, and
χ = Na + N̄a is a Majorana field. As a result a positive (negative) helicity
eigenstate carries a well defined average lepton number equal to the neutrino
speed v = p/E (−v):

L =
u†γ5u

u†u
= ±v . (8)
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The lepton number vanishes in the non-relativistic limit due to the Majorana
nature of the neutrino mass.

One may observe that in contrast to lepton number, helicity is not invari-
ant under Lorentz transformations. However, in an isotropic Universe the
comoving thermal bath frame is a privileged frame where isotropy enforces
the spin density matrix to be diagonal in the helicity basis. That means that
each of the neutrino flavors Na can be divided in two populations of oppo-
site helicities and well defined distribution functions f±

a . The total lepton
number carried by each neutrino species is equal to

La = V

∫

d3pa

(2π)3
(f+

a − f−
a ) va , (9)

where va is the neutrino speed and V the spatial volume. It will prove
convenient to work instead with the helicity asymmetries i.e., the differences
between positive and negative helicity neutrino abundances,

Λa = V

∫

d3pa

(2π)3
(f+

a − f−
a ) . (10)

Sterile neutrinos have been deprived of lepton number in the leptogenesis
literature because they have Majorana masses (one exception is the oscilla-
tion mechanism of ref. [49]). But contrary to the lepton number assignment,
that is to an extent arbitrary, it is a unambiguous fact that neutrinos de-
velop helicity asymmetries as a result of collisions with standard leptons and
Higgs and also directly from the same leptogenesis processes that generate
lepton asymmetries. That is shown explicitly in section 4.3.

It is important to realize that neutrino helicity asymmetries affect the
way lepton number is transported in collision processes and consequently
the so-called lepton number washout effect. Take for example scatterings
like Nali ↔ t̄qt, Nal̄i ↔ tq̄t, and crossed channels, that violate standard
lepton number by one unit (t is the right-handed top quark and qt the
quark iso-doublet linear combination that has a Yukawa coupling with it).
The correct evaluation of the lepton number violation rate must take into
account that the reaction rates depend on the neutrino helicity and the two
helicity states have different abundances. Reactions with positive helicity
neutrinos in initial or final states like N+

a li are suppressed with respect to the
opposite helicity states N−

a li. The former are possible only because neutrinos
have Majorana masses and their transition amplitudes are suppressed by the
Lorentz contraction factors Ma/E. If neutrinos are in thermal equilibrium
their helicity asymmetries can be parametrized with degeneracy parameters
ηa = µa/T as any other fermions, ηa for positive helicity and −ηa for negative
helicity states, and the rate of standard lepton number violation contains
terms like

γNali→t̄qt
− γt̄qt→Nali = γ+(ηφ + ηli + ηa) + γ−(ηφ + ηli − ηa) , (11)
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where γ+, γ− stand for the average reaction rates of N+
a li ↔ t̄qt and N−

a li ↔
t̄qt respectively. We have replaced ηt and ηqt

with the Higgs degeneracy
parameter using the constraint ηt−ηqt

= ηφ enforced by the rapid top quark
Yukawa interactions. Identical expressions apply to other single neutrino
absorption and emission reactions, decays and inverse decays Na ↔ liφ
(at temperatures T . Ma where the Higgs and lepton thermal masses are
small enough), or φ̄ ↔ Nali (at temperatures T & 2Ma), and respective
radiative processes with one electroweak gauge boson in the initial or final
state. Notice that because γ+ is smaller than γ− the result depends on
the neutrino chemical potentials. The two rates coincide with each other
only when neutrinos are at rest. On the other hand one should not expect
that the neutrino degeneracy parameters ηa are damped faster by the lepton
number violating reactions than the combinations ηφ + ηli , also damped by
∆L = 2 collisions like φli ↔ φ̄l̄j .

Contrary to the partial lepton numbers of standard leptons, Li, and
neutrinos, La, the total lepton number

LT =
∑

i

Li +
∑

a

La (12)

and the quantum number B − L are conserved by neutrino-lepton Yukawa
couplings. In addition, B−L is conserved by sphalerons and is only violated
by neutrino Majorana masses. For practical purposes namely, application
of the constraints imposed by CPT invariance and unitarity on the collision
rates, it is more convenient to work with the helicity asymmetries Λa rather
than the lepton numbers La because the states with definite distribution
functions are helicity eigenstates, not (chiral) lepton number eigenstates.
On the other hand, the quantum number

L′ =
∑

i

Li +
∑

a

Λa (13)

has essentially the same interesting properties as the total lepton number L.
The combination B −L′, also conserved by weak sphalerons, reduces to the
standard model B − L when the heavy neutrinos vanish from the Universe.
It is conserved by neutrino Majorana masses but its violation by Yukawa
couplings is suppressed by the neutrino masses i.e., mass over energy ratios.

Neutrino helicity asymmetries play a role in the transport of standard
lepton number. We have shown for instance that processes that violate
flavor quantum numbers Li and Λa by one unit contribute to the violation
rate of Li − B/3 as follows (if all particles are in thermal equilibrium):

d(Li − B/3)

dt
= −γ

(0)
ia (ηφ + ηli − ηa) − γ

(2)
ia (ηφ + ηli + ηa) + · · · , (14)

where γ
(0)
ia is the total rate of L′ conserving reactions and γ

(2)
ia the total

rate of ∆L′ = ±2 reactions. In turn, the standard lepton asymmetries
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are transferred to the neutrino sector in collisions with them. The same
processes as above contribute to the violation rates of helicity asymmetries
Λa as

dΛa

dt
= γ

(0)
ia (ηφ + ηli − ηa) − γ

(2)
ia (ηφ + ηli + ηa) + · · · . (15)

This proves that the neutrino helicity asymmetries cannot be assumed iden-
tically zero because the L′ conserving reactions are faster than the L′ vio-
lating ones. It is also clear that only the later contribute to the violation
rate of B − L′. We will return to this point in section 5.

This discussion shows that in order to correctly evaluate the lepton num-
ber washout effects neutrino helicity asymmetries are an essential ingredient.
They have been so far completely ignored in the leptogenesis literature. The
calculation of the lepton number generated during the decay phase of the
lightest neutrino(s) and integration of the Boltzmann equations including
neutrino helicity asymmetries is complicated by the fact that the neutrinos
are neither purely non-relativistic nor ultrarelativistic at temperatures close
to their masses. In this paper we limit ourselves to the temperature range
where neutrinos are ultrarelativistic which permits first order calculations on
their mass over temperature ratios. In next section we calculate the B −L′

asymmetry generated during neutrino thermal production.

4 Generation of lepton asymmetries

4.1 Neutrino thermal production

Let us now examine the leptogenesis processes in detail during neutrino
thermal production. We assume that the Universe is initially empty of
singlet neutrinos, not produced in the inflaton decay but only thermally
from standard leptons and Higgs. The dominant thermalizing reactions are
identical to the ones of the charged lepton iso-singlets [50], namely, top
quark scattering processes like qtt̄R → liNa, Higgs boson decay φ̄ → liNa

and related scattering processes with one additional electroweak gauge boson
in the initial or final state. Higgs boson decays into leptons and neutrinos,
first considered in ref. [47] in the context of leptogenesis, are allowed as much
as the decays into a lepton iso-doublet and a charged lepton iso-singlet, φ̄ →
liei, because the Higgs has a significant thermal mass, mφ = xφT ∼ 0.6T ,
larger than the lepton thermal masses [51, 52, 53] as pointed out in ref. [50].

Let na denote the average neutrino number densities per helicity degree
of freedom and Ya = naV the abundances in a fixed comoving volume whose
spatial volume V expands as V̇ = 3H V . For definiteness we assume that the
reheating temperature is much higher than the neutrino masses so that the
neutrinos thermalize while they are ultrarelativistic. Then, the equilibrium
densities and abundances are equal to neq = 0.90T 3/π2 and Yeq = neqV ,
respectively. Assuming for simplicity that the distribution functions scale
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with the equilibrium distribution functions f eq
a as

fa =
na

neq
f eq

a , (16)

and approximating the Pauli blocking factors 1−fa with 1−f eq
a in neutrino

emission reactions, the neutrino abundances evolve as

Ẏa = Γa(Yeq − Ya) . (17)

Here we neglect reactions with two or more neutrino states that are of higher
order in the Yukawa couplings.

Γa represent the neutrino collision frequencies. At temperatures much
higher than the neutrino masses Γa scale with the temperature as follows:

Γa =
β

8π
(h†h)aaT . (18)

They are comparable with the φ̄ → liNa proper decay rate, equal to 1
16π

(h†h)aamφ if one ignores thermal effects other than the Higgs boson mass.
The coefficient β gets contributions from the Higgs decay, top quark and W ,
B gauge boson scatterings in analogy with the charged leptons case [50, 25].
The relative weights of these reactions depend on the temperature because
the couplings constants [54] and thermal mass factors [51, 52, 53, 55] run
with the energy scale [25]. Using mφ = 0.6T for the Higgs mass and 109

GeV temperature scale coupling constants namely, αs ≈ 1/26, αw ≈ 1/38,
α′ ≈ 1/81 for the strong, SU(2) and U(1)Y gauge interactions respectively,
and λt ≈ 0.60 for the top Yukawa coupling, one obtains β ≈ 1/7, where 46%
comes from the Higgs boson decay, 41% from W and B electroweak gauge
boson scatterings, and 13% from right-handed top quark scatterings.

In the radiation era the Hubble expansion rate scales as H = 1/2t ∝ T 2

and the assumed initially zero neutrino densities na converge exponentially
to the equilibrium densities:

na = neq

(

1 − e−Ta/T
)

. (19)

The relaxation temperatures Ta are given as

Ta =
ΓaT

H
= β KaMa , (20)

and the second identity establishes a relation with the parameters Ka of
Eq. (3) that control the speed of neutrino decays when they become non-
relativistic and vanish from the Universe. The low energy neutrino data
indicates that the parameters Ka & 50 are large, see Eq. (5). As a result
singlet neutrinos reach thermal equilibrium at temperatures Ta & 10Ma

when they are still ultrarelativistic.
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We have defined neutrino densities in the basis of Majorana mass eigen-
states as usual. However, this is not valid for all temperature scales because
neutrinos also get thermal masses from the interactions with the lepton -
Higgs thermal bath. The chiral conserving thermal mass terms are [51, 52]

m2
ab =

1

8
(h†h)abT

2 . (21)

At high enough temperatures the thermal masses dominate over the vacuum
masses Ma and the neutrino Hamiltonian eigenstates are eigenstates of the
matrix (h†h)ab. The opposite happens when Ma are much larger than the
thermal masses, and at temperatures where the two types of masses are
comparable with each other the neutrinos undergo strong flavor oscillation
processes. One can estimate the thermal over vacuum mass ratios using
Eqs. (4), (20):

m2
aa

M2
a

= π Ka
H

Ma
≈

K3
aMa

1019 GeV

T 2

T 2
a

. (22)

These have to be small at the relaxation temperatures Ta in order that the
neutrino densities evolve as described in this section. For decay constants
Ka of the order of 50 (100) this happens for neutrino masses Ma below 1012

(1011) GeV. Then, the thermal masses can be neglected provided that the
vacuum masses are not degenerate.

There is another point. The neutrino states produced in collisions are
linear combinations of the mass eigenstates Na of the form hiaNa. In a free
path the mass eigenstate wave functions oscillate with unequal frequencies,
√

p2 + M2
a , for the same linear momentum p. They differ by (M2

a −M2
b )/2E

for relativistic particles (energy E ≈ p) and in a mean free path 1/Γa give
rise to average phase differences equal to

M2
a − M2

b

2Γa

〈

E−1
〉

≈ 5
M2

a − M2
b

m2
aa

, (23)

where we made use of Eqs. (20) and (22) with β ≈ 1/7. This shows that as
long as thermal masses are much smaller than the vacuum mass gaps the
neutrino mass eigenstates develop large phase decoherence between colli-
sions so that one can consider that the neutrino states with definite number
densities are the vacuum mass eigenstates Na. This is important because
if, for example, the neutrino densities na were all equal to each other the
leptogenesis sources would vanish in the ultrarelativistic regime at lowest
order, as the results of next sections show.

4.2 Standard lepton asymmetries

Leptogenesis is dominated by the following CP asymmetric reactions: Higgs
decays into leptons and singlet neutrinos, inverse decays and scatterings
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Figure 1: Diagrams contributing to CP-asymmetries in decays, inverse
decays and scatterings.

of leptons off neutrinos. The CP asymmetries result from the diagrams
of Fig. (1) [47], more specifically, from the interference between the tree
level amplitude and the absorptive part of the one-loop amplitude of the
Higgs boson decay (inverse decay) and from the interference between the
t channel amplitude and the absorptive part of the s channel amplitude
of neutrino lepton scattering. The particle asymmetry sources vanish in
thermal equilibrium but, as long as neutrinos stay rarefied scatterings and
inverse decays do not match Higgs decays and particle asymmetries develop
in the various lepton flavors, singlet neutrinos, and Higgs boson as well as
enforced by hypercharge conservation.

The source terms (labeled with S) responsible for the generation of the
standard family lepton numbers Li are given in leading order by

(L̇i)S =
∑

b

∆γ(φ̄ → Nbli)S − ∆γ(Nbli → φ̄)S +

∑

abj

∆γ(Nalj → Nbli)S − ∆γ(Nbli → Nalj)S , (24)

where
∆γ(X → Y ) = γ(X → Y ) − γ(X̄ → Ȳ ) (25)

denotes the difference between the rate of an arbitrary reaction X → Y
integrated over a fixed comoving volume and the rate of the conjugate re-
action X̄ → Ȳ , where X̄ and Ȳ are CPT conjugate states of X and Y
respectively (CPT transforms particles into antiparticles, reverses helicity
but not momentum). The difference ∆γ(X → Y ) can be separated in two
types of contributions, the transport terms proportional to particle antipar-
ticle abundance asymmetries and the source terms responsible for primordial
asymmetry generation. By definition the source terms exist in absence of
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particle aymmetries and in the ∆γ(X → Y )S expressions we assume that
CPT conjugate states have exactly the same distribution functions.

CPT invariance and unitarity ensure that the total decay rates of any
quantum state and its CPT conjugate state are equal to each other. This
translates in constraints on the rate asymmetries:

∑

Y

∆γ(X → Y )S = 0 . (26)

In leading order, one gets:

∆γ(Nbli → φ̄)S +
∑

aj

∆γ(Nbli → Nalj)S = 0 , (27)

∑

bi

∆γ(φ̄ → Nbli)S = 0 . (28)

Then, the Li source terms of Eq. (24) can be written as,

(L̇i)S =
∑

b

∆γ(φ̄ → Nbli)S +
∑

abj

∆γ(Nalj → Nbli)S . (29)

On the other hand, CPT invariance implies that any reaction X → Y
has the same transition probability as Ȳ → X̄ where the bars indicate CPT
conjugate states. As a result the rate asymmetries ∆γ(X → Y ) obey the
following constraints in thermal equilibrium assuming identical particle and
antiparticle distribution functions (zero chemical potentials):

∆γ(X → Y )eq + ∆γ(Y → X)eq = 0 . (30)

Here one employs the identity [56, 57] satisfied by the thermal distribution
functions of particles involved in two inverse reactions X → Y and Y → X,
schematically, fX(1 ± fY ) = fY (1 ± fX), where fX (fY ) stands for the
product of initial state particle distribution functions and 1 ± fY (1 ± fX)
for the product of final state stimulated emission and/or Pauli blocking
factors. Applying the above constraint on Eqs. (27) and (28) one obtains

∆γ(φ̄ → Nbli)eq +
∑

aj

∆γ(Nalj → Nbli)eq = 0 . (31)

This ensures that Eq. (29) satisfies the well known property that the asym-
metry source terms vanish in thermal equilibrium [56, 57]. It can be put in
closed form by combining Eqs. (29) and (31) as follows:

(L̇i)S =
∑

b

∆γ(φ̄ → Nbli) − ∆γ(φ̄ → Nbli)eq +

∑

abj

∆γ(Nalj → Nbli)S − ∆γ(Nalj → Nbli)eq . (32)
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The diagrams of Fig. (1) lead to the following results:

∆γ(φ̄ → Nbli)S =
∑

ak

Jijab

∫

dΦ fφFiFjFaFb

−4p′i · p
′
j

(pa − pi)2 − m2
φ

, (33)

∆γ(Nalj → Nbli)S = Jijab

∫

dΦ fafjFφFiFb

4p′i · p
′
j

(pa − pi)2 − m2
φ

, (34)

where fα are particle distribution functions, Fα are fermion Pauli-blocking
factors 1 − fα or the stimulated emission factor Fφ = 1 + fφ and

dΦ = V
∏

α

d3pα

(2π)32Eα
(2π)8δ(pa + pj − pφ) δ(pb + pi − pφ) (35)

is the phase space element running over all particles φ, li, lj , Na, Nb (V
is the spatial volume). Standard leptons and Higgs boson are assumed to
be in thermal equilibrium while singlet neutrinos have densities given by
Eq. (19) and distribution functions proportional to the thermal distribution
functions as in Eq. (16). The chemical potentials are equal to zero. The
factors

Jijab = Im{hiahjah
∗
ibh

∗
jb}MaMb (36)

signal the necessary CP and lepton number violation through Yukawa cou-
plings and Majorana masses. Jijab are antisymmetric under neutrino flavor
exchange a ↔ b and symmetric under lepton flavor exchange i ↔ j. The
internal product p′i · p

′
j = pipj − pi · pj in the integrand functions refers to

pseudo 4-vectors p′i. The p′i space components coincide with the 3-vector
linear momentum pi and its time component is equal to the momentum ab-
solute value, p′0i = pi. The 4-vectors p′i result from the spinor wave functions
in a thermal bath [52]:

∑

u ū = 6p′i. In contrast, the time component of the
4-momentum pi is the lepton energy, related with the lepton thermal mass
as usual: p0

i = (p2
i + m2

i )
1/2.

The generation rate of total standard lepton number L =
∑

Li is ob-
tained from Eq. (29). The constraints of Eqs. (27) and (28) indicate that
only scatterings, or better, inverse decays, contribute as L sources:

(L̇)S =
∑

abij

∆γ(Nalj → Nbli)S = −
∑

aj

∆γ(Nalj → φ̄)S . (37)

We evaluate the asymmetries including Pauli blocking effects and non-zero
lepton thermal masses. However, we neglect the neutrino masses inside
the integrals because we are calculating the leading order contributions at
relativistic temperatures T ≫ Ma. Neutrino masses appear in the constant
factors Jijab. All the dependence on the neutrino flavors goes in Jijab and
in the neutrino number densities na that are functions of the temperature
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and flavor dependent relaxation temperatures Ta. Notice that the following
identity holds for the distribution functions in Eq. (34)

fafj(1 + fφ) =
na

neq
fφ(1 − f eq

a )(1 − fj) . (38)

Under these conditions the generation rate of standard total lepton number
is

(L̇)S = −
c

(8π)4
T 2 V

∑

abij

na − neq

neq
Jijab , (39)

with c ∼ 3 (c = 2.6 for a Higgs thermal mass mφ = 0.6T and lepton
thermal square masses m2

l = 0.036T 2). It is clear that leptogenesis ceases
when neutrinos reach thermal equilibrium abundances.

4.3 Neutrino asymmetries

In the above equations one sums over both Na neutrino helicities. But as em-
phasized in this paper the leptogenesis processes generate also asymmetries
in the abundances of the two helicity states N+

a and N−
a . The helicity asym-

metries are denoted as Λa and are defined with respect to the cosmological
comoving frame. In the following the rate asymmetries like ∆γ(X → N+

a Y )
denote the difference between the rates of the CPT conjugate reactions
X → N+

a Y and X̄ → N−
a Ȳ . Wherever the neutrino helicity does not ap-

pear explicitly a sum over helicities is assumed. The leading order source
terms are

(Λ̇b)S =
∑

i

{

∆γ(φ̄ → N+
b li) − ∆γ(N+

b li → φ̄)+

∆γ(φ → N+
b l̄i) − ∆γ(N+

b l̄i → φ)
}

S
+ (40)

∑

aij

{

∆γ(Nalj → N+
b li) − ∆γ(N+

b li → Nalj)+

∆γ(Nal̄j → N+
b l̄i) − ∆γ(N+

b l̄i → Na l̄j)
}

S
.

When a = b in the second summation one gets the correct factor of 2 for
the helicity flip reactions N∓

b → N±
b .

The Λb source terms are subject to CPT invariance and unitarity con-
ditions namely

∆γ(N+
b li → φ̄)S +

∑

aj

∆γ(N+
b li → Nalj)S = 0 , (41a)

∆γ(N+
b l̄i → φ)S +

∑

aj

∆γ(N+
b l̄i → Na l̄j)S = 0 . (41b)
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These constraints eliminate four of the source terms contained in Eq. (40):

(Λ̇b)S =
∑

i

∆γ(φ̄ → N+
b li)S + ∆γ(φ → N+

b l̄i)S +

∑

aij

∆γ(Nalj → N+
b li)S + ∆γ(Na l̄j → N+

b l̄i)S . (42)

From the CPT invariance condition under thermal equilibrium and zero
chemical potentials, Eq. (30), one derives also that

∆γ(φ̄ → N+
b li)eq +

∑

aj

∆γ(Nalj → N+
b li)eq = 0 , (43a)

∆γ(φ → N+
b l̄i)eq +

∑

aj

∆γ(Nal̄j → N+
b l̄i)eq = 0 , (43b)

which ensures that the Λb source terms vanish in thermal equilibrium.
The rate asymmetries in Eq. (29) contain by definition sums over neu-

trino helicity states and therefore relate to the ones of Eqs. (42) as

∆γ(φ̄ → Nbli) = ∆γ(φ̄ → N+
b li) − ∆γ(φ → N+

b l̄i) , (44a)

∆γ(Nalj → Nbli) = ∆γ(Nalj → N+
b li) − ∆γ(Na l̄j → N+

b l̄i) . (44b)

Replacing this in Eqs. (29) and (42) one obtains the leading source terms of
the total ’lepton number’ L′ =

∑

Li +
∑

Λa:

(L̇′)S = 2
∑

bi

∆γ(φ̄ → N+
b li)S + 2

∑

abij

∆γ(Nalj → N+
b li)S . (45)

The asymmetries are calculated from the diagrams of Fig. (1). The Nb

positive (negative) helicity states are specified with spinors satisfying Eq. (6).
The results are the following, using the same notations as in Eqs. (33)-(35):

∆γ(φ̄ → N+
b li)S =

∑

ak

Jijab

∫

dΦ fφFiFjFaFb
−2τ

(pa − pi)2 − m2
φ

, (46)

∆γ(Nalj → N+
b li)S = Jijab

∫

dΦ fafjFφFiFb
2τ

(pa − pi)2 − m2
φ

, (47)

with
τ = p′i · p

′
j +

pi

pb
pb · p

′
j −

pj

pb
pb · p

′
i . (48)

Notice that the Nb helicity states as well as the absolute 3-momenta pi,
pj, pb in the expressions above are defined with respect to the cosmological
comoving frame. As before we neglect the neutrino masses inside the phase
space integrals. The integrand function τ is finite however, if one neglects
lepton thermal masses and Pauli blocking factors the integration over the

14



fermion angular variables yields a null result (recall that the distribution
function factor in Eq. (47) obeys the relation (38)). This unexpected result
means that in that approximation L′ is not generated at all i.e., the total
asymmetry, Λ =

∑

Λb, generated in the neutrino sector cancels exactly
the total lepton number generated in the standard lepton sector. But for
non-zero lepton thermal masses the result is finite:

(L̇′)S =
c

(8π)4
T 2 V

∑

abij

na − neq

neq
Jijab , (49)

with c ∼ 1 (c = 1.2 for Higgs thermal mass mφ = 0.6T and lepton thermal
square masses m2

l = 0.036T 2).
The comparison with Eq. (39) shows that leptogenesis generates a total

neutrino helicity asymmetry Λ of opposite sign and larger than the standard
lepton asymmetry L so that the source of L′ = L + Λ is of opposite sign
to L. The neutrino and lepton asymmetries are not separately conserved.
They are both violated by neutrino Yukawa couplings and the lepton num-
ber L is violated by weak sphalerons as well. These interactions cause the
interchange of B −L′ between the singlet neutrino and standard lepton and
quark sectors but conserve B −L′ in absence of neutrino Majorana masses.
The neutrino masses are so responsible for the B − L′ dissipation. In next
section we study this effect and determine the evolution of B − L′.

5 Washout processes

Weak sphalerons and neutrino Yukawa couplings are the only ones that
violate the standard partial lepton numbers Li. The processes like φ̄ → Nali,
t̄qt → Nali violate the standard total lepton number L =

∑

Li by one unit,
but this does not mean that they dissipate the total lepton number that
is generated in leptogenesis. Indeed, one has to distinguish between the
two neutrino helicity states N±

a . The reactions φ̄ → N−
a li, t̄ qt → N−

a li,
φ̄ A → N−

a li (A is a gauge boson) N+
a φ̄ → liA, N+

a A → liφ, N+
a t̄ →

q̄t li, N+
a qt → t li violate L by one unit but conserve the total ’lepton’

number L′ = L + Λ because they decrease the total helicity Λ =
∑

Λa

by one unit. On the contrary, the same processes with opposite helicity
neutrino states violate L′ by two units. They require non-zero neutrino
Majorana masses and are suppressed at relativistic temperatures T ≫ Ma.
The L′ conserving processes dominate the neutrino thermalization and enter
in equilibrium with relaxation temperatures Ta given by Eq. (19). Below
these temperatures the L′ conserving processes are fast in comparison with
the expansion rate and thus enforce constraints on the lepton and neutrino
chemical potentials:

ηφ + ηi − ηa = 0 . (50)
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This implies that due to rapid flavor violation all lepton doublets li have
equal degeneracy parameters ηi = ηl and all positive (negative) helicity
neutrinos N+

a (N−
a ) have equal degeneracy parameters ηa = ηφ+ηl (−ηa). As

a result the partial asymmetries Li and Λa are not directly related with the
respective leptogenesis sources but are rather determined from the overall
B − L′ asymmetry by the set of chemical potential constraints.

There are as much constraints as independent fast flavor changing reac-
tions and this depends on the temperature scale [58, 59]. In the standard
model case the latest interactions to enter in equilibrium are the Yukawa
couplings and their equilibrium temperatures depend on the particular right-
handed quark or lepton iso-singlet (for a detailed discussion see refs. [47, 60]).
In any case the constraints leave B−L′ as a free variable and determine the
other quantum numbers, in particular Li and Λa, as proportional to B−L′.
In turn, B −L′ is completely determined by the leptogenesis sources on one
hand and the dissipation (wash out) processes on the other hand.

B − L′ is violated by two units in the ∆L = 1, ∆Λ = 1 reactions
φ̄ → N+

a li, t̄ qt → N+
a li, φ̄ A → N+

a li, and crossed channels N−
a qt → t li,

..., in the ∆L = 2, ∆Λ = 0 scatterings φ̄ φ̄ → lilj , φ̄ l̄j → φ li, l̄i l̄j → φφ,
and in the ∆L = 0, ∆Λ = 2 scatterings φ φ̄ → N+

a N+
b , φN−

b → φN+
a ,

N−
a N−

b → φ φ̄. All these processes depend on the existence of neutrino Ma-
jorana masses. In the ∆L = 2 case they contribute through the neutrino
propagators and in the ∆L = 0, 1 reactions they make possible that a neu-
trino be produced or annihilated with the ’wrong’ helicity state i.e., helicity
opposite to the chirality determined by the Yukawa couplings liNaφ. The
left-handed (right-handed) chiral projection of a positive (negative) helicity
state with energy E goes as Ma/2E in the relativistic limit. Thus, the L′

violating processes are suppressed with respect to the respective L′ conserv-
ing channels by a ratio going as M2

a/4E2. The thermal average of this ratio
is about M2

a/16T 2 for scatterings but in the case of φ̄ → Nali decays the
center of mass energy, mφ ∼ 0.6T , and average neutrino energy are much
smaller. The φ̄ → N+

a li branching fraction is given by

B+
a =

γ(φ̄ → N+
a li)

γ(φ̄ → Nali)
≈

8M2
a

T 2
, (51)

two orders of magnitude higher than in the case of scatterings. As the
∆L = 1 scatterings have total rates comparable with the Higgs decays, this
means that the Higgs decays dominate the L′ violating rates by two orders
of magnitude over the scatterings. As far as ∆L = 0 and ∆L = 2 scatterings
is concerned, φ φ̄ → N+

a N+
b , ..., φ̄ φ̄ → lilj , ..., they are also suppressed by

a factor of 10−2 plus an extra factor of |hia|
2 with respect to the ∆L′ = 2

Higgs decays, because they get one more Yukawa coupling than the ∆L = 1
scatterings.

From the discussion above one learns that the Higgs decays and inverse
decays dominate the violation of B − L′. Hence, the evolution of B − L′ is
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well described by the equation

Ḃ − L̇′ = −(L̇′)S + 2
∑

ai

{∆γ(N+
a li → φ̄)0 − ∆γ(φ̄ → N+

a li)0} , (52)

where the label ’0’ indicates that the rates are calculated at tree level con-
trary to the leptogenesis source term (L̇′)S given in Eq. (45). At temper-
atures below Ta neutrinos have thermal equilibrium abundances and the
transport terms depend on the chemical degeneracy parameters as follows:

Ḃ − L̇′ = −(L̇′)S + 4
∑

ai

γφ̄→N+
a li

(ηφ + ηi + ηa) . (53)

Moreover, the L′ conserving neutrino reactions are in equilibrium under Ta

and the constraint of Eq. (50) applies, so that ηi = ηl and ηa = ηφ + ηl.
The degeneracy parameters parametrize the particle antiparticle number
asymmetries. For example, for a ultrarelativistic fermion f the asymmetry
is given in leading order by Yf − Yf̄ = 1.83 ηf Yeq [57, 61]. The constraints
imposed by the standard model interactions leave one degeneracy parameter
as free parameter [58, 59]. In our case they lead to a relation of the form

B − L′ = −r(ηφ + ηl)Yeq . (54)

The precise value of the factor r depends on the set of chemical constraints
and therefore on the temperature scale. It varies from r = 12.8 at tem-
peratures above 1012 GeV, where the Yukawa couplings of the iso-singlet
right-handed bR quark and τR lepton are not yet in equilibrium, to r = 18.6
under 104 GeV, where all quark and lepton Yukawa couplings are in equi-
librium.

The φ̄ → N+
a li partial decay rate is a fraction of the φ̄ → Nali decay rate

as indicated by Eq. (51). On the other hand, the Higgs decay rates scale
with the first power of the temperature and can be related in the same way
as in Eq. (20) with the Hubble expansion rate H:

∑

i

γφ̄→Nali
=

T ′
a

T
H Yeq . (55)

The temperatures T ′
a are about one half smaller than the relaxation tem-

peratures Ta because unlike the later T ′
a do not receive contributions from

scattering processes. Combining everything one rewrites Eq. (53) in the
form,

d(B − L′)

dT−3
= −

(

dL′

dT−3

)

S

− T 3
⋆ (B − L′) , (56)

T 3
⋆ =

8

3r

∑

a

B+
a T 2T ′

a ∼
2

3

∑

a

M2
aTa . (57)
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This shows that when leptogenesis processes are ineffective, at temperatures
T < Ta, B −L′ decays exponentially with T−3 and damping constant equal
to T 3

⋆ . The same happens, as determined by Eq. (54) with the neutrino
degeneracy parameters ηa = ηφ + ηl.

It is important to recognize the difference between T⋆ and the relaxation
temperatures Ta. At Ta neutrino reactions enter in thermal equilibrium and
the lepton and neutrino partial quantum numbers Li − B/3 and Λa begin
to be rapidly violated. However, it does not mean that the standard lepton
number L or B − L′ start to be washed out at Ta. It only means that the
effective couplings liN

−
a φ enter in equilibrium and the constraints ηφ + ηi −

ηa = 0 are enforced. The complete set of chemical equilibrium constraints
force B−L′ to distribute into B, −L and −Λ in similar proportions. On the
other hand the effective couplings liN

+
a φ are not yet in equilibrium because

the temperatures Ta are much larger than the neutrino Majorana masses.
These couplings enter in equilibrium later at the temperature T⋆. Below
that temperature the constraints ηφ + ηi − ηa = 0 should apply on top of
the previous constraints ηφ + ηi − ηa = 0. It means that the degeneracy
parameters ηa, ηφ + ηi, and B − L′ as well as all asymmetries proportional
to B − L′ are strongly damped below the temperature T⋆. But not above
T⋆. In fact, B − L′ is only marginally damped at the Ta temperature scale.

For decay constants Ka as large as 70, neutrinos enter in equilibrium at
temperatures Ta ≈ 1

7KaMa ∼ 10Ma but the B −L′ damping constant T 3
⋆ is

two orders of magnitude smaller than the T 3
a scale: T 3

⋆ ∼ 1
150

∑

a T 3
a . More-

over, the greater the decay constants Ka are the smaller is T 3
⋆ in comparison

with T 3
a . On the other hand T⋆ is quite close to the neutrino mass scale.

This gives an important lesson. If one ignores neutrino helicity asym-
metries, as has ever been done in the literature, then one obtains that the
temperatures Ta set the chemical potential constraints ηi+ηφ = 0 and define
the B − L relaxation temperature scale. This is wrong. The correct con-
straints must include the neutrino degeneracy parameters ηa and are given
by Eq. (50). Ignoring neutrino helicity asymmetries leads to an overesti-
mate by two orders of magnitude of the damping rate of the lepton and
quark asymmetries.

So far we have considered that singlet neutrinos have equilibrium tem-
peratures Ta & 10Ma larger than any of their masses Ma. Another scenario
that has been often considered for simplicity is the hierarchical scenario
[1, 2, 3, 28, 15, 21, 25] where one of the singlet neutrinos, N1, is much
lighter than the others. Then, it is argued that any asymmetries generated
at the heaviest neutrinos decaying phases are later washed out by the lightest
neutrino ∆L = 1 reactions before the temperature reaches the mass M1. As
we have just shown this is not correct because it does not take into account
the N1 helicity asymmetry. Once that is done one concludes from Eq. (57)
that in this case the quantum number B − L′ and all particle asymmetries
are damped with a relaxation temperature given by T 3

⋆ ≈ 2
3M2

1 T1 (in cases
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where the ∆L = 2 reactions mediated by off-shell heavy neutrinos are not
significant). If T1 = 10M1 for instance, then T⋆ is quite close to the mass
M1 which means, the asymmetries generated at the heaviest neutrinos de-
caying temperatures are not massively damped before the lightest neutrino
approaches its decaying phase.

6 Conclusions

We studied an aspect of the leptogenesis mechanism that has ever been
overlooked. We showed that as a rule the two helicity states of Majorana
neutrinos do not have exactly the same abundances, contrary to what has
been tacitly assumed. The helicity asymmetries defined as differences be-
tween the two helicity state abundances of each neutrino species can be
parametrized with appropriate neutrino chemical potentials as any other
particles asymmetries. The leptogenesis processes generate neutrino helicity
asymmetries of the same order of magnitude as the standard lepton asym-
metries. This is quite natural because in the ultrarelativistic limit neutrino
Majorana masses are negligible and the neutrino - lepton Yukawa couplings
conserve a total lepton number assigned as +1 for right-handed neutrinos
and -1 for left-handed neutrinos.

The neutrino helicity asymmetries participate in the system of Boltz-
mann equations that govern the evolution of particle asymmetries and do
not decouple because for any particular reaction the two neutrino helicity
states have distinct reaction rates. A reaction where a incoming left-handed
lepton doublet goes with a incoming (outgoing) neutrino with positive (neg-
ative) helicity is suppressed with respect to the reaction where the same
neutrino species is in the opposite negative (positive) helicity state. The
former is possible only because the neutrino has a Majorana mass but its
amplitude is suppressed by the Lorentz contraction factor. The two reactions
rates coincide only when the neutrino is at rest. As a result the standard
lepton and neutrino sectors interchange asymmetries with each other which
affects significantly the transport of lepton number and the derivation of the
present B − L and baryon asymmetries of the Universe.

It proves convenient to work with the quantum number B −L′ where L′

is the sum of the total standard lepton number, L, and the total neutrino
helicity asymmetry, Λ (equal to the difference between the total number of
neutrinos with positive helicity and the total number of negative helicity
neutrinos). B − L′ is conserved by sphalerons, its violation by Yukawa
couplings is suppressed by the neutrino mass over temperature ratios, and
reduces to the standard model B − L number when the singlet neutrinos
vanish from the Universe. At any given moment the chemical potential
constraints enforced by reactions in thermal equilibrium set the asymmetries
of the participating particles as proportional to B − L′.
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We made a detailed analysis of the period when neutrinos are ultrarel-
ativistic which permits simplifying approximations. It shows that one has
to distinguish between the temperature Ta at which a neutrino species Na

comes into equilibrium and the temperature scale where its reactions have a
significant damping (washout) effect on B −L′ and all particle asymmetries
proportional to B −L′ (B −L in particular). A neutrino species comes into
equilibrium when its ∆L = 1 reactions become fast in Hubble rate terms.
In the existing literature all ∆L 6= 0 reactions contribute to wash out the
B − L asymmetry. But this is not right because it does not differentiate
the neutrino helicity states. Some neutrino helicity configurations conserve
L′. These channels dominate the rates and exist even in absence of neutrino
Majorana masses. The other channels violate L′ and contribute to wash out
B − L′ but they are subdominant and are suppressed by the second power
of neutrino Lorentz contraction factors. A consequence of this is that the
contribution of ∆L = 1 reactions to the B − L′ damping rate is two orders
of magnitude smaller than expected if the neutrino helicity asymmetries are
ignored. In the hierarchical scenario, where one of the singlet neutrinos is
much lighter than the others, this means that the asymmetries generated
until the heaviest neutrinos vanish from the Universe are not necessarily
washed out by the fast ∆L = 1 reactions of the lightest neutrino before it
reaches its decaying phase.

In section 4 we studied the generation processes in the period of neutrino
thermal production. It turns out that the B − L′ asymmetry generated
directly in the neutrino helicity sector is of opposite sign and larger than
the asymmetry generated in the standard lepton sector.

We did not attempt to make a full study of the decaying phase of the
singlet neutrino(s). The calculations are more involved because the temper-
ature is of the order of the neutrino mass(es). However, it is clear that the
leptogenesis codes need to be revised. Neutrino helicity asymmetries are
expected to have a quantitative effect on the calculation of the final B − L
asymmetry. This is reinforced by the fact that the light neutrino absolute
mass scale implied by the atmospheric neutrino anomaly, 0.05 eV or larger,
indicates that the heavy singlet neutrinos decay fast, practically in thermal
equilibrium, when the temperature drops to their mass values and there-
fore the simple picture where leptogenesis reduces to asymmetric decays of
overabundant non-relativistic neutrinos does not apply.

This work was partially supported by the FCT grants
CERN/FNU/43666/2001 and POCTI/FNU/43666/2002.
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