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Abstract

We study S-duality transformations that mix the graviton with various forms of
matter. In the case of matter in the form of a 3-form field, the dual of an (A)dS
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1 Introduction

The cosmological constant problem has motivated various attempts to modify Einstein’s

theory of gravity. In the present paper we study S-duality acting on the gravitational field.

A non-trivial action of S-duality on gravity is motivated by hidden symmetries in d = 11

supergravity/M-theory [1, 2], where it mixes the gravitational and matter degrees of freedom.

In the present paper we confine ourselves to d = 4 dimensions, where the dual of a

graviton is again a graviton-like symmetric two-component tensor field [3 – 5]. We will

consider, however, an additional 3-index antisymmetric tensor field (as present in d = 11

supergravity), whose field strength Fabcd can mix with the Riemann tensor under an S-

duality transformation. This duality transformation is shown to possess all desirable features,

namely to exchange equations of motion and Bianchi identities (at the linearized level).

We want to persue the question whether a metric obtained through such a duality trans-

formation can describe “naturally” a space time which is flat (rather than (A)dS), although

the original space time (before the duality transformation) is (A)dS with arbitrary cosmo-

logical constant.

Our first non-trivial result is that the duality transformation including Fabcd transforms

an (A)dS metric into a flat Minkowski metric under the simple assumption that the “origi-

nal” 3-index field has vanishing field strength Fabcd. This mechanism to obtain a vanishing

cosmological constant is very different from its cancellation by a specific (fine tuned) value

for Fabcd ∼ Σεabcd as considered in [6], and also from the proposal in [7]: Here we suggest

that, although space-time is possibly strongly (A)dS in one version of gravity, we “see” its

dual that is obtained by the above duality transformation.

“Seeing” a metric means to propagate along corresponding geodesics. The propagation

along geodesics (for a point-like test particle) follows from the covariant conservation of the

energy momentum tensor, which is related to the covariant conservation of the Einstein

tensor (and minimal coupling to gravity) and hence to the second Bianchi identity of the

Riemann tensor at the nonlinear level.

The validity of the second Bianchi identity for a Riemann tensor R̃abcd, obtained through

a standard [3 – 5] or nonstandard (see below) duality transformation, is straightforward to
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prove at the linearized level only. For its validity at the nonlinear level no general proof

exists, but below we will study particular configurations of a dual metric g̃µν that give rise

to all components of R̃abcd (at the full nonlinear level), and in these cases the second Bianchi

identity is satisfied automatically.

There exist no-go theorems on interacting theories (with at most two derivatives) of

“dual” gravitons [8]. Apart from the fact that these could be circumvented by the intro-

duction of additional fields, these theorems can indicate that the full effective “dual” theory

is microscopically non-local, or describes only a limited space of configurations of the dual

metric. Some phenomenon of this kind is actually to be expected, if the effective dual theory

solves the cosmological constant problem.

Among the configurations of the metric, that can be obtained through a duality trans-

formation, one has to find – within the present proposal – at least the ones that are of

confirmed phenomenological relevance: the Schwarzschild metric, and Freedman-Robertson-

Walker (FRW) like cosmologies. The purpose of the present paper is to investigate, under

which conditions these metrics can appear as duals of another metric and, eventually, matter.

Our results are as follows:

a) the Schwarzschild metric (in asymptotically flat space) can be obtained as a contraction

of a metric that is dual to a Taub-NUT-AdS metric with (negative) cosmological constant

Λ, in the limit where Λ → ∞, but where the mass m and the NUT parameter ℓ tend to zero

with m/ℓ and m3Λ fixed. Although the metric and the Riemann tensor diverge in this limit,

the dual of the Riemann tensor (constructed along the non-standard duality transformation)

remains finite and coincides with the one of a pure Schwarzschild metric.

b) if one wishes to obtain Riemann tensors corresponding to FRW cosmologies (with

nonvanishing, time dependent Ricci tensors) as duals of “fundamental” Riemann tensors, the

“fundamental” Riemann tensors have to contain “matter” in the form of torsion. The reason

is that the duality transformation relates the Ricci tensor of the FRW cosmology to the first

Bianchi identity (the cyclic identity) of the “fundamental” Riemann tensor. Although the

non-standard duality transformation can generate a constant ((A)dS) Ricci tensor, a FRW-

like Ricci tensor can only appear once the cyclic identity for the “fundamental” Riemann

tensor is violated, which corresponds to torsion.
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Admitting torsion it is highly non-trivial to generate a Riemann tensor through a duality

transformation, that is torsion free and can be derived from a (FRW like) metric. Neverthe-

less it turns out that a quite simple ansatz for the torsion in the “fundamental” Riemann

tensor – represented as non-metric contributions to the connection – does the job: it suffices

to include torsion in the form of a vector and an axial vector, whose only nonvanishing

components are its time like components γ(t) and β(t), respectively. Admitting in addition

a FRW like “fundamental” metric with a FRW scale factor a(t), one finds that two relations

among a(t), γ(t) and β(t) are sufficient in order to generate a dual Riemann tensor that can

be derived from a FRW metric with an arbitrary scale factor ã(t). The non-standard form

of the duality relation plays a crucial role to this end.

The subsequent outline of the paper is as follows: In the next section 2 we review the

properties of standard (linearized) gravitational S-duality. In section 3 we present a non-

standard gravitational duality rule including a 3-form field. We discuss its consistency at

the linearized level, and apply it to (A)dS metrics (at the nonlinear level) with the result

mentioned above: under a simple assumption flat Minkowski space appears as the dual of

(A)dS, for any value of the de Sitter curvature.

In section 4 we generalize this result to Taub-NUT-(A)dS metrics, and derive the Schwarz-

schild metric as a contraction of a dual Taub-NUT-AdS metric.

In section 5 we consider “fundamental” Riemann tensors with torsion, and derive FRW

cosmologies as duals of theories with torsion. In section 6 we conclude with an outlook.

2 The Dual of Gravity

For most of the paper it will be convenient to work with tensors with (latin) indices in (flat)

tangent space, that are related to tensors with (greek) indices, as usual, by contractions with

a vierbein. For the Riemann tensor this relation reads

Rabcd = e µ
a e ν

b e ρ
c e σ

d Rµνρσ . (2.1)

Let us recall the symmetry properties of Rabcd:

Rabcd = −Rbacd = −Rabdc = +Rcdab . (2.2)
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It satisfies the first Bianchi identity (or cyclic identity)

Rabcd + Racdb + Radbc = 0 (2.3)

and the second Bianchi identity

DeRabcd + DcRabde + DdRabec = 0 . (2.4)

In the vacuum, the equations of motion imply the vanishing of the Ricci tensor:

Ra
b ≡ Rca

bc = 0 (2.5)

where indices are raised and lowered with the flat metric ηab = diag(−1, 1, 1, 1).

A priori there exist three different possibilities to define dual Riemann tensors R̃abcd that

are obtained from Rabcd by a contraction with the antisymmetric tensor εabcd:

a) left duality: R̃abcd =
1

2
εabef Ref

cd (2.6)

b) right duality: R̃abcd =
1

2
R ef

ab εefcd (2.7)

c) left-right symmetric duality: R̃abcd =
1

4

[
εabef Ref

cd + R ef
ab εefcd

]
. (2.8)

The symmetric duality transformation (2.8) ensures that the dual Riemann tensor is sym-

metric,

R̃abcd = R̃cdab . (2.9)

However, for (2.8) a double duality transformation reproduces the identity (up to a sign)

only if

Rabcd =
−1

4
εabef Refgh εghcd . (2.10)

The square of the left or right duality transformations (2.6) and (2.7) reproduces always

the identity, but now the symmetry property (2.9) holds only if Rabcd satisfies (2.10).

The properties of R̃abcd have previously been discussed in [3–5]. Its first Bianchi identity

follows from the vanishing of the Ricci tensor (2.5) corresponding to Rabcd. Its second Bianchi

identity at the linearized level can be derived from the second Bianchi identity of Rabcd (at

5



the linearized level) if, again, Ra
b vanishes. Finally the first Bianchi identity for Rabcd, eq.

(2.3), implies the vanishing of the dual Ricci tensor.

Its symmetries together with the Bianchi identities are sufficient to prove that, at the lin-

earized level, R̃µνρσ can be written in terms of a dual linearized metric h̃µν [9] (the distinction

between latin and greek indices is meaningless at the linearized level) as

R̃µνρσ =
1

2

(
h̃µσ,νρ + h̃νρ,µσ − h̃µρ,νσ − h̃νσ,µρ

)
. (2.11)

An explicit formula for h̃µν in terms of R̃µνρσ is given in [9] in the coordinate gauge xµh̃µν =

xνh̃µν = 0:

h̃µν(x) = −
∫ 1

0
dt
∫ t

0
dt′t′ xρxσ R̃µρνσ(t′x) . (2.12)

Thus the S-dual of linearized gravity can be constructed explicitly. The validity of the

second Bianchi identity (2.4) for the dual Riemann tensor beyond the linearized level requires,

however, the knowledge of the dual connections which are not yet constructed at this point,

and this problem has no general solution.

3 The S-Dual of Gravity and a 3-Form Field

The standard gravitational S-duality transformations as discussed in section 2 allow only to

relate metrics that satisfy the equations of motion in the vacuum, i.e. that have vanishing

Ricci tensors. The simplest way to allow for nonvanishing (but constant) Ricci tensors is to

generalize the duality transformations such that they involve, in a nontrivial way, a 3-form

field (as present in d = 11 supergravity).

A three-form field Aabc = A[abc] has a field strength

Fabcd = ∂[aAbcd] (3.1)

and its equations of motion read

∂aFabcd = 0 . (3.2)

The only solutions respecting Lorentz covariance are of the form

Fabcd = Σεabcd , Σ = const. . (3.3)
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Now we consider the following generalization of the left-right symmetric duality transforma-

tion (2.8):

R̃abcd =
1

4

[
εabef

(
Ref

cd + F ef
cd

)
+
(
R ef

ab + F ef
ab

)
εefcd

]
+

1

12
εabcdR , (3.4a)

F̃abcd = − 1

12
εabcdR , (3.4b)

where

R ≡ Rab
ba . (3.5)

Let us discuss the properties of R̃abcd. First, R̃abcd still has the same symmetry properties

(2.2) as Rabcd. Next, the first Bianchi identity still holds:

R̃abcd + R̃adbc + R̃acdb = 0 (3.6)

where one has to use eq. (3.3) for Fabcd (i.e. the equation of motion for Aabc), and the

last term ∼ R in (3.4a) serves to cancel the contributions proportional to the cosmological

constant Λ, if the Ricci tensor Ra
b satisfies

Rb
a ≡ Rca

bc = Λδa
b . (3.7)

Also, the second Bianchi identity still holds at the linearized level:

∂eR̃abcd + ∂cR̃abde + ∂dR̃abec = 0 (3.8)

where one has to use the linearized second Bianchi identity for Rabcd, and the fact that both

the Ricci tensor Ra
b and Fabcd are constant. Eqs. (3.6) and (3.8) are already sufficient to

prove that, at the linearized level, R̃µνρσ can again be expressed in terms of a dual metric

h̃µν as in eq. (2.11).

For the dual Ricci tensor one obtains

R̃a
b = 3Σδa

b (3.9)

with the help of the first Bianchi identity for Rabcd, and eq. (3.3) for Fabcd. Hence R̃a
b is

proportional to a dual cosmological constant Λ̃ with

Λ̃ = 3Σ . (3.10)
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F̃abcd always satisfies the Bianchi identity

∂[aF̃bcde] = 0 (3.11)

which is a trivial identity in d = 4. The dual equations of motion

∂aF̃abcd = 0 (3.12)

follow from the constancy of the Riemann scalar R: together with (3.7) eq. (3.4b) gives

evidently

F̃abcd = −1

3
Λεabcd . (3.13)

Eq. (3.11) shows that F̃abcd can be written as

F̃abcd = ∂[aÃbcd] (3.14)

and the solution of the equation of motion (3.12) for Ãabc gives

F̃abcd = Σ̃εabcd (3.15)

with, from (3.13),

Σ̃ = −1

3
Λ . (3.16)

Equations (3.10) and (3.16) show that in some sense Aabc is dual to the cosmological

constant: Up to a factor 3 the duality transformations (3.4) lead to an interchange of Σ, the

parameter characterizing the solution of the equation of motion of Aabc, with the cosmological

constant Λ.

The effect of a double duality transformation on Fabcd is easily obtained from eqs. (3.13)

and (3.10):
˜̃
F abcd = −Fabcd . (3.17)

After some calculation one finds that the effect of a double duality transformation on Rabcd

is the same as before:
˜̃
Rabcd = −Rabcd (3.18)

if Rabcd satisfies

Rabcd =
−1

4
εabef Refghεghcd . (3.19)
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Hence, on metrics which satisfy (3.19), our generalized duality transformation (3.4) has

all the desirable properties. (As in eqs. (2.6 - 2.7) we could have replaced the left-right

symmetric duality transformation (3.4a) of Rabcd by a purely left or a purely right duality.

The consequences are the same as in section 2, and we will return to this issue in section 5.)

As before, however, the validity of a second Bianchi identity for R̃abcd can not be proven

beyond the linearized level.

Now we make the following evident, but important, observation: Iff the vev Σ of the

3-form field strength (before the duality transformation) vanishes, the dual Riemann tensor

R̃abcd has, from eq. (3.9), a vanishing Ricci tensor, independently from the value Λ of the

space-time described by the Riemann tensor Rabcd before the duality transformation. Hence,

iff for some reason we “see” the space-time described by the dual Riemann tensor R̃abcd, we

see automatically a space-time with vanishing cosmological constant.

As discussed in the introduction, we may identify R̃abcd with our “physical” space-

time only if R̃abcd can also describe physically relevant non-trivial configurations as the

Schwarzschild and FRW metrics, and this beyond the linearized level (such that the full

second Bianchi identity (2.4) holds). The analysis of the action of the generalized dual-

ity transformations (3.4a) on metrics that are suitable generalizations of the Schwarzschild

metric is the subject of the next chapter.

4 Non-standard Duality and Taub-NUT-(A)dS Spaces

At the level of linearized standard gravitational S-duality, the parameters m and ℓ of a Taub-

NUT metric [10, 11] get interchanged [3–5]. Hence the NUT parameter ℓ can be interpreted

as a “magnetic” mass. On Taub-NUT spaces the gravitational S-duality can be extended to

the full nonlinear level [12], and this can be generalized to Taub-NUT-(A)dS spaces in the

case of the non-standard gravitational S-duality (3.4) [12]. At the nonlinear level, however,

the relations between the ”original” parameters m, ℓ, and the parameters m̃, ℓ̃ caracterizing

the dual configuration, are somewhat more involved (see below).

The Taub-NUT-(A)dS metric can be written as the following generalization of the Taub-
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NUT metric [10, 11]:

ds2 = −f 2(r)

(
dt + 4ℓ sin2 θ

2
dφ

)2

+ f−2(r)dr2 +
(
r2 + ℓ2

) (
dθ2 + sin2 θdφ2

)
(4.1)

with

f 2(r) = 1 −
2 (mr + ℓ2) − Λ

(
1
3
r4 + 2ℓ2r2 − ℓ4

)

r2 + ℓ2
. (4.2)

Now the non-vanishing components of the Riemann tensor are,

R0101 = −2
(
1 +

4

3
Λℓ2

)
Am̄,ℓ(r) +

1

3
Λ

R0202 = R0303 =
(
1 +

4

3
Λℓ2

)
Am̄,ℓ(r) +

1

3
Λ

R1212 = R1313 = −
(
1 +

4

3
Λℓ2

)
Am̄,ℓ(r) −

1

3
Λ

R2323 = 2
(
1 +

4

3
Λℓ2

)
Am̄,ℓ(r) −

1

3
Λ

R0312 = −R0213 =
(
1 +

4

3
Λℓ2

)
Dm̄,ℓ(r)

R0123 = −2
(
1 +

4

3
Λℓ2

)
Dm̄,ℓ(r) (4.3)

where Am̄,ℓ and Dm̄,ℓ are given by

Am̄,ℓ(r) =
m̄r3 + 3ℓ2r2 − 3m̄ℓ2r − ℓ4

(r2 + ℓ2)3
,

Dm̄,ℓ(r) =
−ℓr3 + 3ℓm̄r2 + 3rℓ3 − m̄ℓ3

(r2 + ℓ2)3
(4.4)

and

m̄ = m
(
1 +

4

3
Λℓ2

)−1

. (4.5)

Constructing the components of the dual Riemann tensor from eq. (3.4a) one obtains

contributions from the terms ∼ Fabcd and ∼ R. One finds

R̃0101 = −2
(
1 +

4

3
Λℓ2

)
Dm̄,ℓ(r) + Σ

R̃0202 = R̃0303 =
(
1 +

4

3
Λℓ2

)
Dm̄,ℓ(r) + Σ

R̃1212 = R̃1313 = −
(
1 +

4

3
Λℓ2

)
Dm̄,ℓ(r) − Σ
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R̃2323 = 2
(
1 +

4

3
Λℓ2

)
Dm̄,ℓ(r) − Σ

R̃0312 = R̃0213 = −
(
1 +

4

3
Λℓ2

)
Am̄,ℓ(r)

R̃0123 = 2
(
1 +

4

3
Λℓ2

)
Am̄,ℓ(r) . (4.6)

The following properties of the functions Am,ℓ, Dm,ℓ are helpful in order to find a metric

that reproduces the Riemann tensor (4.6): If one defines

m′ = −ℓ2

m
(4.7)

one has

Am′,ℓ(r) =
ℓ

m
Dm,ℓ(r) ,

Dm′,ℓ(r) = − ℓ

m
Am,ℓ(r) . (4.8)

Note that, at the level of linearized gravity, we could replace Am,ℓ(r) and Dm,ℓ(r) in

(4.4) by their asymptotic forms for r → ∞. Then we would obtain the simple relation

Am,ℓ(r) = −Dℓ,m(r). This simple relation does not survive in full non-linear gravity.

Using the relations (4.8) and the definition (4.5) of m̄ one finds that the following metric

reproduces all components of R̃abcd:

d̃s
2

= − ℓ

m − 4Σℓ3



f̂ 2(r)

(
dt + 4ℓ sin2 θ

2
dφ

)2

−
[
f̂−2(r)dr2 +

(
r2 + ℓ2

) (
dθ2 + sin2 θdφ2

)]




(4.9)

with

f̂ 2(r) = 1 +
−2ℓ2

(
m − 4Σℓ3 − r

(
1 + 4

3
Λℓ2

))
+ 3Σℓ

(
1
3
r4 + 2r2ℓ2 − ℓ4

)

(m − 4Σℓ3) (r2 + ℓ2)
. (4.10)

In order to bring this metric into the same form as in (4.1) one has to rescale the coor-

dinates as

t =

√
m − 4Σℓ3

ℓ
t′ , r =

√
m − 4Σℓ3

ℓ
r′ , (4.11)

and to define the dual parameters

m̃ = −
(
1 +

4

3
Λℓ2

) (
m − 4Σℓ3

)−3/2
ℓ5/2 , ℓ̃ = ℓ3/2

(
m − 4Σℓ2

)− 1

2 ,

Λ̃ = 3Σ . (4.12)
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This allows to write the dual metric again (up to an overall sign) in the form (4.1) with

f̃ 2(r′) = 1 −
2
(
m̃r′ + ℓ̃2

)
− Λ̃

(
1
3
r
′4 + 2r

′2ℓ̃2 − ℓ̃4
)

r′2 + ℓ̃2
. (4.13)

Thus the metric dual to a Taub-NUT-(A)dS metric is again of the Taub-NUT-(A)dS

form. Let us now assume that the vev Σ of the 3-form field strength vanishes. Then the

expressions (4.12) for the dual parameters collapse to

m̃ = −
(
1 +

4

3
Λℓ2

)
m−3/2ℓ5/2 , ℓ̃ = ℓ3/2m− 1

2 , Λ̃ = 0 . (4.14)

Now, as in section 3, the dual cosmological constant vanishes, but, somewhat disturbingly,

the dual NUT parameter ℓ̃ does not vanish for m → 0 (in contrast to its behaviour in

linearized gravity). However, a vanishing dual NUT parameter – as required for a dual

Schwarzschild metric – can be obtained in the following limit:

Λ → −∞, m, ℓ → 0, m/ℓ = k = const. (4.15)

It turns out that the constant k can be absorbed into a rescaling of the coordinates and be

chosen as k = 1. Then, in addition, we require

−4

3
m3Λ = m̃ = const. (4.16)

when taking the limits (4.15). Now, since ℓ̃ → 0, the dual metric (as described by f̃ 2(r′) in

(4.13) with ℓ̃ = Λ̃ = 0) coincides with the Schwarzschild metric with mass m̃.

Note that during the above contraction of the original metric we have kept the coordinates

r, t constant, which is a coordinate dependent statement. As usual in the case of contractions,

coordinates have eventually be rescaled after a parameter dependent general coordinate

transfromation.

Hence we have obtained the desired result: the Schwarzschild metric can be obtained as

the dual of a contracted Taub-NUT-AdS metric. This result would not have been possible in

the absence of an ”original” cosmological constant Λ, and using the standard gravitational

S-duality transformation. Note that although the original metric (and the components of

the original Riemann tensor) diverge in the above limit (4.15), these infinities cancel in the

non-standard expression (3.4a) for the dual Riemann tensor which is what makes this result

possible.
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5 FRW Cosmologies as Duals of Gravity with

Torsion

In this section we investigate whether a dual Riemann tensor R̃abcd, obtained through

a non-standard duality transformation of the type (3.4a), can be identified with a Riemann

tensor describing FRW cosmologies. FRW cosmologies correspond to a metric

ds̃2 = −dt2 + ã2(t) d~x2 (5.1)

where, of course, ã(t) depends on the properties of the matter to which the Einstein tensor

couples.

Defining

ã(t) = eα̃(t) (5.2)

the only nonvanishing components of the Riemann tensor R̃abcd are

R̃ijij = ˙̃α
2

(no sum over i, j) , (5.3a)

R̃i0i0 = − ˙̃α
2 − ¨̃α , (5.3b)

and the nonvanishing components of the Ricci tensor are

R̃ii = −3 ˙̃α
2 − ¨̃α , (5.4a)

R̃00 = 3 ˙̃α
2
+ 3¨̃α , (5.4b)

where dots denote time derivatives.

However, the duality transformation (3.4a) allows only for Ricci tensors R̃ab = 3Σηab (see

(3.9)) with Σ̇ = 0 from the equation of motion (3.2) for the 3-form field. Hence the duality

transformation (3.4a) has to be modified by additional terms corresponding to contributions

from matter in the “original” version of the theory before the duality transformation.
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The most elegant way to do this is to replace the Riemann tensor Rabcd on the right-hand

side of (3.4a) by a Riemann tensor including torsion [13]. Our corresponding conventions

are as follows: the Riemann tensor is written as

Rσ
µνρ = Γσ

µρ,ν − Γσ
µν,ρ + Γσ

βνΓ
β
µρ − Γσ

βρΓ
β
µν (5.5)

where the connection is decomposed as

Γσ
µν = MΓσ

µν + Γ̂σ
µν . (5.6)

Here MΓσ
µν is the standard connection constructed from the metric gµν , and Γ̂σ

µν represents

torsion. Requiring gµν;ρ = 0 (where the covariant derivative is defined with the full connection

Γσ
µν) implies

Γ̂σµν = Γ̂[σµ]ν , (5.7)

where indices are raised and lowered with the metric gµν . Assuming eq. (5.7), Γ̂σµν can be

decomposed with respect to the Lorentz group as [13 – 15]

Γ̂σµν = Γ̂V
σµν + Γ̂A

σµν + Γ̂T
σµν . (5.8)

Here Γ̂V
σµν is proportional to a vector Vµ,

Γ̂V
σµν = V[σ gµ]ν , (5.9)

Γ̂A
σµν is totally antisymmetric and proportional to an axial vector Aµ,

Γ̂A
σµν = εσµνρ Aρ (5.10)

and Γ̂T
σµν is traceless. For our subsequent purposes – the discussion of cosmologies - it suffices

to confine ourselves to torsion of the type Γ̂V
σµν and Γ̂A

σµν [14]. Moreover, according to the

symmetries associated to the cosmological principle (isotropy and homogeneity), only the

time (zero) components of Vµ and Aµ are assumed to be nonvanishing.

First, we make an ansatz for the metric analogous to eq. (5.1),
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ds2 = −dt2 + a2(t) d~x2 . (5.11)

Then it turns out to be convenient to parametrize the nonvanishing components of Γ̂V
σµν

as

Γ̂V
0ij = −Γ̂V

i0j = δij a2(t) γ(t) , (5.12)

and the nonvanishing components of Γ̂A
σµν as

Γ̂A
ijk = εijk a3(t) β(t) . (5.13)

In principle, the full connection Γσ
µν and the metric gµν are both determined by varying

an action of the form

S =
∫

d4x
{

1

2

√
−g gµν Rσ

µνσ(Γ) + Lm(g, Γ, · · ·)
}

(5.14)

both with respect to gµν and Γσ
µν [13, 14] (where Lm is the Lagrangian of matter fields).

In the context of cosmology suitable averages over the matter fields are performed, and the

resulting equations can be expressed in terms of an “effective” density (depending on the

torsion), an “effective” pressure and sources for torsion, whose unknown properties allow to

treat the functions γ(t), β(t) in eqs. (5.12) and (5.13) as additional arbitrary parameters

[14, 15].

Here we are not interested in the dynamics that fixes a(t), γ(t) and β(t), but rather

in the following problem: Given the three above functions, we can construct the Riemann

tensor (5.5) or its version Rabcd according to (2.1). Then we can find its dual according to

eq. (3.4a) and ask, whether its components can be of the form of eqs. (5.3) such that they

describe standard – torsionless – FRW cosmologies.

This is a highly nontrivial question, since Rσ
µνρ has none of the properties (2.2) – (2.4)

due to the presence of torsion. (Of course, we introduced torsion in order to avoid the

vanishing of R̃a
b, which is a consequence of the cyclic identity (2.3), but now it can well be

impossible to satisfy all of the constraints (2.2) – (2.4) for R̃abcd).
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First, Rσ
µνρ as obtained from eq. (5.5) with Γσ

µν as in eq. (5.6), a metric as in (5.11)

and Γ̂σ
µν given by the sum of eqs. (5.12) and (5.13), is no longer symmetric:

Rσµνρ 6= Rνρσµ (in general) . (5.15)

Consequently the result for R̃abcd depends on whether we apply a left-right symmetric

duality transformation as in eq. (3.4a), or a purely left or purely right duality transformation,

i.e. suitable generalizations of eqs. (2.6a) and (2.6b). Below we will treat all possible cases.

Recall that, originally, the duality transformation (3.4a) lead to flat Minkowski space (de-

scribed by R̃abcd) if the field strength Fabcd vanishes, regardless of the cosmological constant

(curvature of (A)dS space) described by Rabcd. We will continue to work with the assumption

of vanishing Fabcd. However, in order to treat the different possible duality transformations

simultaneously, we generalize (3.4a) as

R̃abcd =
1

4

[
(1 + e)εabef Ref

cd + (1 − e)Ref
abεefcd

]
+

1

12
εabcd R . (5.16)

We have dropped the terms ∼ Fabcd, but the parameter e allows to interpolate between

i) left duality (e = 1)

ii) right duality (e = −1)

iii) left-right symmetric duality (e = 0).

Our results concerning the properties of R̃abcd are as follows: First, R̃abcd satisfies all

of the symmetry properties (2.2) (where the last one is nontrivial) if and only if the three

functions α, β and γ satisfy

e
(
β2 − γ2 + γ̇ − α̇γ + α̈

)
= 0 . (5.17)

Second, R̃abcd satisfies the cyclic identity (2.3) if and only if

e
(
β2 − γ2 + γ̇ − α̇γ + α̈

)
= 0 . (5.18)

The fact that eqs. (5.17) and (5.18) coincide is not trivial; the presence of the last term

∼ εabcdR in (5.16) is crucial to this end. Then it is quite remarkable that a very large number
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of constraints is satisfied simultaneously once either e = 0, or one particular relation between

α(t), β(t) and γ(t) is satisfied.

In terms of the original Ricci tensor Ra
b (before the duality transformation) this particular

relation corresponds to Rii = −R00 (no sum over i), or

Rab = λ(t) ηab (5.19)

for some function

λ(t) = −3
(
α̇2 + α̈ + α̇γ + γ̇

)
. (5.20)

Once eq. (5.17) holds, the only nonvanishing components of R̃abcd are

R̃ijij =
1

2
(1 + e)β̇ + (1 − e)βγ +

(3 − e)

2
α̇β , (5.21a)

R̃i0i0 = −1

2
(1 − e)β̇ − (1 + e)βγ − (3 − e)

2
α̇β . (5.21b)

Instead of investigating the validity of the second Bianchi identity (2.4) for R̃abcd, we can

study directly whether eqs. (5.21) can coincide with eqs. (5.3), that would describe a FRW

cosmology in terms of R̃abcd.

First, we find that for e = 0 (left-right symmetric duality) the two expressions (5.21a)

and (5.21b) coincide up to a sign, which implies, from eqs. (5.3), that ¨̃α = 0 or

˙̃α = const. = ±H . (5.22)

Hence, the left-right symmetric dual of a cosmology with torsion corresponds necessarily

to (A)dS, what is not general enough for our purposes.

On the other hand, for both cases e = ±1 we can describe any cosmology α̃(t) if, in

addition to eq. (5.17), the three functions α, β and γ satisfy the following relation:

From eqs. (5.3) one can derive

R̃ijij + R̃i0i0 =
d

dt

(
R̃ijij

)1/2
, (5.23)
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and – after the use of eqs. (5.21) – the satisfaction of the corresponding additional differential

equation between α(t), β(t) and γ(t) is sufficient in order to be able to write eqs. (5.21) in

the form of eqs. (5.3) with ˙̃α =
(
R̃ijij

)1/2
and

(
R̃ijij

)1/2
as in eq. (5.21a). Since we have

only two equations (5.17) and (5.23) to satisfy, the remaining freedom allows to describe any

cosmology α̃(t) with the help of suitable functions α(t), β(t) and γ(t).

Generally, an explicit solution of the corresponding system of differential equations (with

α̃(t) given) is very difficult to impossible. However, FRW cosmologies corresponding to a

relativistic fluid with a simple equation of state, p = wρ, give rise to logarithmic scale factors

α̃(t) with

˙̃α(t) =
2

3
(1 + w)t−1 . (5.24)

In this case all required relations can be satisfied by a simple ansatz

α̇(t) = a0 t−1

β(t) = b0 t−1

γ(t) = g0 t−1 (5.25)

and the (e-dependent) solution of a non-linear algebraic system of 3 equations for the 3

constants a0, b0 and g0.

The main result of the present section is, however, the statement made already above:

Given a duality transformation of the form of eq. (5.16), with e = ±1, we can obtain any

FRW-like Riemann tensor R̃abcd as the dual of an “original” theory with torsion of the form

in eqs. (5.12) and (5.13), for suitable functions α(t), β(t) and γ(t). The fact that we manage

to satisfy all symmetry conditions and Bianchi identities for R̃abcd simultaneously is highly

nontrivial, and depends on the last term in eq. (3.4a) which can be considered as a remnant

of the duality transformation including the 3-form field (although its field strength has finally

been set to zero).

Except for the relation (5.19) we have not been able to express the required relations

between α(t), β(t) and γ(t) in terms of dynamical principles of the original theory with
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torsion. If these relations do not hold (exactly), the resulting dual Riemann tensor R̃abcd

corresponds again to a cosmology with torsion, a possibility that has been investigated, e.g.,

in [14, 15].

6 Discussion and Outlook

Above we considered various generalizations of gravitational S-duality including various

forms of matter in the duality transformation. Including “matter” in the form of a 3-form

field Aabc, we obtained the particularly interesting result that the dual cosmological constant

vanishes independently of the value of the “original” cosmological constant, if the corre-

sponding field strength vanishes. This motivated us to investigate under which conditions

phenomenologically relevant metrics g̃µν can be obtained through gravitational S-duality

transformations.

We found that the Schwarzschild metric can be obtained as the dual of a contracted

Taub-NUT-AdS metric. The necessity to perform such a contraction can be considered

as unsatisfactory, but otherwise one is left with a non-vanishing NUT parameter ℓ̃ in the

dual (supposedly physical) metric. The physics and phenomenology of non-vanishing NUT

parameters has been studied in [16]. However, non-vanishing NUT parameters give rise to

closed timelike curves, if one insists on the completeness of the metric [11], which seems

to rule out such a possibility. But, for tiny NUT parameters ℓ, the argument assumes

completeness of the metric at tiny (timelike) distances. Assuming a modification of gravity

(UV regularization) at small distances, this problem may disappear. For instance, lattice

gauge theories contain Dirac monopoles (whose Dirac string “escapes” through the space

between the lattice sites). It seems to be a logical possibility that lattice regularized theories

of gravity contain equally configurations with “magnetic” masses (corresponding to NUT

parameters ℓ), without the above problem of closed timelike curves. Then we could possibly

live with small nonvanishing NUT charges ℓ (up to phenomenological constraints [16]), and

the contraction performed at the end of chapter 4 does not have to be pushed to its singular

limit.

In chapter 5 we obtained FRW-like metrics as duals of theories with torsion. Clearly, the
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corresponding Riemann tensor (5.5), given the decomposition (5.6) of the connection, can

always be written as

Rσ
µνρ = MRσ

µνρ + R̂σ
µνρ (6.1)

where MRσ
µνρ depends on the metric gµν only, and R̂σ

µνρ depends on “matter” in the form

of the component Γ̂σ
µν of the connection. Thus the presence of torsion in Rσ

µνρ – appearing

on the right-hand side of the duality transformation (5.16) – can equally be interpreted as

another generalization of the original duality transformation rule (3.4a) in the form of adding

more matter dependent terms to its right-hand side.

However, here matter is not represented in the form of fields, but in the form of compo-

nents Γ̂σ
µν , that are treated as effective densities as it is the case for ρ and the pressure p in

FRW cosmologies with matter in the form of a relativistic liquid.

In order to obtain a consistent gravitational S-duality transformation rule including mat-

ter in the form of fundamental fields, one should pursue the study of hidden symmetries of

d = 11 supergravity theories [1, 2], and investigate its consequences on d = 4 gravity after

suitable compactifications. At present we know practically nothing about an effective 4d

field theory, written in terms of the dual graviton, that could emerge from this approach.

We should remark that a possible solution of the cosmological comstant problem, in

terms of such an effective field theory, could emerge from a non-standard (possibly non-

local) coupling of matter fields to gravity. After all, the problematic contributions to the

cosmological constant result from vacuum expectation values and quantum effects of fields,

whose standard (minimal) coupling to gravity is far from experimental verification.

In the absence of a field theoretic form of a duality transformation we confined ourselves

to a “bottom-up” approach, in the sense that we studied macroscopic configurations of the

metric (verified at distances >∼ 1 mm), where matter is represented either as a point like

source at the center of the Schwarzschild solution, or as effective densities in the case of

cosmological solutions.

The fact that both phenomenologically relevant metrics can be obtained, under suitable

assumptions, as S-duals indicates that our observed space time is possibly to be identified

with the dual of some underlying gravitational theory.
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