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Abstract: We study the semiclassical decay of macroscopic spinning strings in AdS5×S5

through spontaneous splitting of the folded string worldsheet. Based on similar considera-

tions in flat space this decay channel is expected to dominate the full quantum computation.

The outgoing strings are uniquely specified by an infinite set of conserved (local) charges

with a regular expansion in inverse powers of the initial angular momentum. We compute

these charges and determine functional relations between them. Finally, a preliminary dis-

cussion of the corresponding calculation in the non-planar sector of the dual gauge theory

is presented.
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1. Introduction and summary

Within the framework of the AdS/CFT correspondence it has proved fruitful to explore

sectors of both theories which are characterized by large charges. In the Berenstein, Mal-

dacena and Nastase limit [1] one considers operators of U(1)R charge J such that J ∼ N2

as N → ∞ with gYM finite. This leads to a subsector of the theory for which the quantum

corrections are under control, despite the fact that the ’t Hooft coupling g2
YMN becomes

large. A remarkable feature of this limit is that it maintains a full genus expansion [2, 3].

The effective genus parameter turns out to be g2 = J2/N , which is nonvanishing despite

the large-N limit. This allows one to compare the process of string splitting with a compu-

tation in the dual gauge theory, by determining decay widths of the corresponding BMN

operators [4]. At leading order in λ′ = g2
YMN/J

2 and g2 these computations have been

shown to agree [5] with light-cone string field theory [6].

Following the BMN idea, one can consider subsectors of the gauge theory with several

large charges [7, 8, 9, 10]. As before, the operators in these sectors have controlled quantum

corrections, allowing one to make a direct comparison with string theory. The objects dual

to such operators have been identified as large, macroscopic spinning strings in AdS5 × S5

[8, 9, 11]. The energies of these strings and the anomalous dimensions of the gauge theory

operators are in agreement up to two-loop order in λ′ [12, 10, 13, 14] 1. Clearly however,

these computations only probe zeroth-order effects in the string coupling constant gs.

1They actually start to disagree at the three loop level [15]. This mismatch has been argued to arise

from the non-commutativity of taking J → ∞ and expanding in λ′ [16].
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Figure 1: Semi-classical decay of a folded, rotating string in flat space-time, following [17]. The

plot on the right shows snapshots at various values of τ . The outgoing pieces exhibit kinks, which

propagate outward along the strings. New momenta P I

x
= −P II

x
are generated in the decay process.

The central question to be addressed in this work is what can be said about gs 6= 0

effects for large spinning strings. In order to study string splitting, one would in principle

need to compute the decay widths of long spinning strings and compare these to a dual

computation of gauge theory operators with many impurities. Unfortunately, the determi-

nation of decay widths in quantum AdS5 × S5 string theory is at least for the time being

out of reach.

It is, however, possible to analyze the decay semi-classically. In flat space-time, the

semi-classical decay of macroscopic strings was analyzed in detail by Iengo and Russo [17].

They also compared the semi-classical results to those of a full quantum treatment. In

the semi-classical approach, one starts with a classical, rotating closed string solution. At

a given time τ = 0, the string can spontaneously split if two points σ and σ′ on the

string coincide in target space, and if their velocities agree. The string described by these

boundary conditions, Xµ(τ, σ) = Xµ(τ, σ′) and Ẋµ(τ, σ) = Ẋµ(τ, σ′), then forms a “figure

eight”. The splitting is realized by declaring that from τ = 0 onward, each of the two string

pieces (“left and right” from the overlapping point), separately satisfy periodic boundary

conditions. The initial conditions on the positions and velocities of the outgoing pieces are

simply taken to be those of the incoming string at the moment τ = 0 of splitting. The

effect of the splitting propagates with the speed of light along the outgoing pieces, leading

to kink-like shapes (see figure 1).

The relations between the energies and angular momenta of the outgoing strings are

determined completely by conservation laws, i.e. one does not need to derive the explicit

string shapes in order to obtain these relations. From the relations between the charges

one can then produce a curve in, for instance, the plane spanned by the masses MI and

MII of the outgoing string pieces. In flat space-time, this curve can be compared with a

full quantum string computation of the decay rate. It has been shown [18, 19] that the
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Figure 2: Sketch of the relation between the semi-classical and the full quantum calculations. The

surface depicts the quantum decay amplitude over the (horizontal) plane spanned by the mass-

square of the two outgoing strings, (MI)
2 and (MII)

2. The amplitude reaches its maximum over

the curve allowed by semi-classical decay.

quantum decay rate, as a function of the outgoing masses, reaches its maximum very close

to the curve obtained from the classical analysis (see figure 2). In order to understand

this relation between the semi-classical computation and the full quantum treatment, it

is important to realize that the space of kinematically allowed decays of a string is much

larger than the channel which is available using a semi-classical treatment (in the sense

described above). Hence, the semi-classical analysis only describes one particular decay

channel. Fortunately the quantum analysis of [18, 19] shows that this is the most probable

channel (at least in flat space-time).

In the present paper we will analyze the decay of semi-classical strings on AdS5 × S5,

with the goal of producing predictions which can in principle be verified on the gauge

theory side. We will focus on the folded string which is rotating on the S5 factor of the

background. We first review the properties of this folded spinning string and all its charges.

There are “global” charges (angular momenta and energy), associated to the isometries of

the target space, as well as an infinite set of “local” (commuting) charges, related to the

integrable structure of the string sigma model. Due to the fact that we consider a rigidly

rotating string, all local charges are uniquely determined as functions of the global charges.

We then analyze the semi-classical splitting process. This splitting process introduces

one new parameter a, the splitting parameter, and all the local and global charges of the

outgoing strings are uniquely determined as functions of this parameter and the global

charges of the incoming string. This is now the case, despite the fact that the outgoing

strings are highly non-rigid, i.e. strongly fluctuating (as in the flat-space case depicted in

figure 1). It is a consequence of the “continuous” way in which the worldsheets of in- and

out- strings have been glued together. Since both local and global charges are conserved

under the free (gs = 0) evolution of the string, they can be computed by integrating the
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charge densities at the moment of splitting, i.e. at the moment when the charge densities of

the in- and out-going strings coincide. In this way, one circumvents the need to explicitly

construct the solutions for the outgoing strings.

In the decay process, several charges which were zero for the ingoing string now get

turned on for the individual outgoing pieces. This is similar to the decay in flat space-time,

where one generates new momenta P Ix = −P IIx (the pieces move away from each other).

For the string on S5, new angular momentum components get turned on. These new

angular momenta are neither Casimirs nor elements of the Cartan subalgebra, indicating

that the outgoing strings are descendants rather than highest-weight states in the gauge

theory dual. Having found these new charges, we in addition also construct the generating

functional for all the higher charges as a function of the charges of the incoming string and

the splitting parameter a.

The conservation of an infinite set of local charges is a consequence of our construc-

tion. It can be checked explicitly that the quantum decay of the string in flat space does

not preserve the higher charges. However, for the most dominant, semiclassical decay pro-

cesses, the conservation laws do hold for all charges. This suggests that the conjectured

integrability in the planar sector of N =4 super-Yang-Mills may be extended in a certain

sense to the non-planar sector.

In order to make a comparison to the gauge theory, it is necessary to express the decay

process on the string theory side purely in terms of relations between charges. In principle

there is an infinite set of relations, for all the local charges, but we focus on the relations

between the global charges. We present these relations in section 3.2. The gauge theory

quantum amplitude is expected to attain a maximum over the semi-classical string decay

curves, just as in figure 2.

On the gauge theory side, the decay of long strings can be analyzed in the spin chain

picture of [20]. The splitting operator, which when acting on a single-trace operator pro-

duces a double-trace operator, is represented by the non-planar part of the dilatation

operator. In section 4 we discuss these gauge theory ingredients. We argue that, despite

the fact that we are not in the BMN regime, an effective genus counting parameter J 2/N

is still present. We also discuss the higher conserved charges and their role in reducing

the possible spin chain decay channels. A detailed study of this decay is, as we will argue,

hampered by the complexity of the spin chain wave functions, and we leave this for future

work.

Finally, let us note that our construction can easily be extended to the study of strings

in less symmetric backgrounds (and in particular to backgrounds dual to confining gauge

theories). This could provide one with information about meson and glue-ball decays. A

study of these processes is under investigation.
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2. Review of the folded string solution

In order to set up our notation and introduce the new charges that will be generated in

the process of the decay, let us briefly review the construction of the folded two spin string

rotating in S5, as first presented by Frolov and Tseytlin [9]. Using the parameterization

X1 + iX2 = sin γ cosψ eiϕ1 , X3 + iX4 = sin γ sinψ eiϕ2 , X5 + iX6 = cos γ eiϕ3 , (2.1)

the metric on a five-sphere X2
1 + · · · +X2

6 = 1 can be written as

ds2S5 = dγ2 + cos2 γ dϕ2
3 + sin2 γ(dψ2 + cos2 ψ dϕ2

1 + sin2 ψ dϕ2
2) , (2.2)

whereas the metric on AdS5 reads ds2AdS5
= dρ2 − cosh2 ρdt2 + sinh2 ρdΩ2

3. The two-spin

string solution is given by the equations

t = κτ , ρ = 0 , γ =
π

2
, ϕ3 = 0 , ϕ1 = w1τ , ϕ2 = w2τ , ψ = ψ(σ) , (2.3)

where κ,w1 and w2 are constants. The equation which determines the profile of ψ(σ) is

ψ
′′

+
1

2
w2

21 sin(2ψ) = 0 , w2
21 ≡ w2

2 − w2
1 ≥ 0 . (2.4)

By integrating this equation once, we obtain the following equation,

ψ
′2 = w2

21(sin
2 ψ0 − sin2 ψ) . (2.5)

Here the constant ψ0 corresponds to the target-space length of the folded string; the point

at which the first derivative of ψ vanishes is the point at which the world-sheet of the string

turns back onto itself. The conformal gauge constraints imply

κ2 = w2
2 sin2 ψ0 + w2

1 cos2 ψ0 . (2.6)

The motion of the string is confined to a three-sphere embedded in the five sphere, which

will remain true also for the two outgoing strings after the decay process to be considered in

the next section. As the isometry group of the three sphere is SO(4), there are 6 conserved

angular momenta Jij , associated to the 6 Killing vectors,

Jij =
√
λ

∫ 2π

0

dσ

2π
(XiẊj −XjẊi) ≡

√
λJij , (i, j = 1 · · · 4) . (2.7)
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Explicitly, using the parameterization (2.1) these can be rewritten as (using γ = π
2 )

J12 =

∫ 2π

0

dσ

2π
cos2 ψϕ̇1 , (2.8)

J34 =

∫ 2π

0

dσ

2π
sin2 ψϕ̇2 , (2.9)

J13 =

∫ 2π

0

dσ

2π

(
cosϕ1 cosϕ2ψ̇ + sinψ cosψ(− sinϕ2 cosϕ2ϕ̇2 + sinϕ1 cosϕ2ϕ̇1)

)
, (2.10)

J24 =

∫ 2π

0

dσ

2π

(
sinϕ1 sinϕ2ψ̇ + sinψ cosψ(sinϕ1 cosϕ2ϕ̇2 − sinϕ2 cosϕ1ϕ̇1)

)
, (2.11)

J14 =

∫ 2π

0

dσ

2π

(
cosϕ1 sinϕ2ψ̇ + sinψ cosψ(cosϕ1 cosϕ2ϕ̇2 + sinϕ2 sinϕ1ϕ̇1)

)
, (2.12)

J23 =

∫ 2π

0

dσ

2π

(
sinϕ1 cosϕ2ψ̇ − sinψ cosψ(sinϕ1 sinϕ2ϕ̇2 + cosϕ2 cosϕ1ϕ̇1)

)
. (2.13)

An additional charge is the energy E, which is associated to the translation invariance with

respect to global time. Using the constraint (2.6) one finds that the energy is given by

E =
√
λ

∫ 2π

0

dσ

2π
Ẋ0 =

√
λ κ =

√
λ
√

w2
2 sin2 ψ0 + w2

1 cos2 ψ0 . (2.14)

Before the decay, the string (2.3) carries two (mutually commuting) angular momenta, J12

and J34

J12 =
2w1

πw21

∫ ψ0

0

cos2 ψ dψ
√

sin2 ψ0 − sin2 ψ
=

2ω1

π ω21
E(q) , (2.15)

J34 =
2w2

πw21

∫ ψ0

0

sin2 ψ dψ
√

sin2 ψ0 − sin2 ψ
=

2ω2

π ω21
(K(q) − E(q)) , q ≡ sin2 ψ0 . (2.16)

The expressions on the right-hand sides have been obtained by making a change of variables

to ψ′, defined by sinψ/ sinψ0 = sinψ′. 2

Although the worldsheet densities for the other angular momenta are non-zero before

the split, they vanish when integrated over the world-sheet. The two non-vanishing angular

momenta are related by

1 =
J12

ω1
+

J34

ω2
. (2.18)

as a consequence of (2.8) and (2.9). Moreover one derives from (2.15), (2.16) and (2.14)

√

ω2
2 − ω2

1 =
2

π
K(q) , q =

κ2 − ω2
1

ω2
2 − ω2

1

. (2.19)

2Our conventions for the elliptic integrals are

E(x; q) =

∫ x

0

dϕ

√

1 − q sin2 ϕ , F (x; q) =

∫ x

0

dϕ
1

√

1 − q sin2 ϕ
. (2.17)

with E(q) := E(π/2; q) and K(q) := F (π/2; q).
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It then follows that all information to determine the energy E=
√
λ E(J12,J34) as a function

of the angular momenta lies within the two equations

4

π2
q =

E2

K(q)2
− J 2

12

E(q)2
, (2.20)

4

π2
=

J 2
34

(K(q) − E(q))2
− J 2

12

E(q)2
. (2.21)

upon elimination of q. This may be achieved iteratively in an expansion for large total

angular momentum J = J12 + J34 via the ansatz

q = q0 +
q1
J 2

+
q2
J 4

+ . . . , (2.22)

E = J E0 +
E1

J +
E2

J 3
+ . . . . (2.23)

One finds that q0 is determined by the equation

E(q0)

K(q0)
= 1 − α , α :=

J34

J . (2.24)

All the higher terms qi with i > 0 are then given algebraically as functions of q0, and

similarly for Ei. The first non-trivial terms which one finds are

q1 = − 4E(q0)K(q0)
2 (K(q0) −E(q0)) (1 − q0) q0

π2 (E(q0)2 − 2E(q0)K(q0) (1 − q0) + (1 − q0)K(q0)2)
, (2.25)

as well as

E0 = 1 , E1 =
2

π2
K(q0) (E(q0) − (1 − q0)K(q0)) . (2.26)

3. Semiclassical decay of the folded string

3.1 The splitting

Let us now consider the spontaneous splitting of the solution (2.3). As mentioned in the

introduction, we will focus on the relations satisfied by the charges of the outgoing strings.

In order to obtain those relations, we fortunately do not need to derive the precise form of

the solutions XI
µ(τ, σ) for the outgoing strings. While those solutions could be obtained in

flat space-time [17], it would be much more difficult to do so in the AdS5×S5 background.

We choose a parametrization on the world-sheet such that at the “end”-point of the

folded, unsplit string we have ψ(σ = 0) = −ψ0 on one end of the string and ψ(σ = π) = ψ0

on the other end. The splitting occurs on the worldsheet at points σ = πa and σ = −πa,
which are both mapped to the same target space point ψ(−πa) = ψ(πa) = ψ̃. The setup

is thus

ψ(0) = −ψ0

ψ(2π)

ψ(aπ) = ψ̃

ψ(−aπ)

ψ(π) = ψ0

cut
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The charges carried by the outgoing strings can be calculated by evaluating the expres-

sions (2.8)-(2.14), using the solution of the string before the decay, but integrating them

over the lengths of each piece of string separately (i.e. σ ∈ [−πa, πa] for the first piece

and σ ∈ [−π,−πa] ∪ [πa, π] for the second one). In these calculations the string solution

is evaluated at the moment of the decay, which without loss of generality we will take to

be τd = 0. This is consistent, as the initial conditions generated from the unsplit solution

for the outgoing two string pieces are consistent, i.e. obey the Virasoro constraint.

The splitting parameter a is then related to the splitting point ψ̃ via (2.5) by

2πa =
2

ω21

∫ ψ̃

−ψ0

dψ
√

sin2 ψ0 − sin2 ψ
=

2

ω21
(K(q) + F (x; q)) (3.1)

where x := arcsin( sin ψ̃
sinψ0

). The “mirror” equation to this is

π(1 − a)
√

ω2
2 − ω2

1 = K(q) − F (x; q) . (3.2)

The angular momenta J12 and J34, which were non-zero before the split, get distributed

between the outgoing string pieces I and II according to

J I
12 =

ω1

πω21
(E(q) + E(x; q)) , (3.3)

J I
34 =

ω2

πω21
(K(q) −E(q) + F (x; q) − E(x; q)) , (3.4)

J II
12 =

ω1

πω21
(E(q) − E(x; q)) , (3.5)

J II
34 =

ω2

πω21
(K(q) −E(q) − F (x; q) + E(x; q)) . (3.6)

Moreover one has as a consequence of the above

a =
J I

12

ω1
+

J I
34

ω2
, 1 − a =

J II
12

ω1
+

J II
34

ω2
. (3.7)

The remaining angular momenta (2.10)–(2.13) vanish before the split, but they become

non-zero for the outgoing strings,

J I
13 = J II

13 = 0 , J I
24 = J II

24 = 0 , (3.8)

J I
14 = −J II

14 = − w2

πw21

√

sin2 ψ0 − sin2 ψ̃ , (3.9)

J I
23 = −J II

23 =
w1

πw21

√

sin2 ψ0 − sin2 ψ̃ . (3.10)

The sum of each of these momenta is zero in accordance with the conservation laws. The

conformal gauge constraint (2.6) remains untouched,

q =
κ2 − ω2

1

ω2
2 − ω2

1

, (3.11)
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and the energies of two outgoing string pieces are given by

EI = κa , EII = κ (1 − a) . (3.12)

A further relation is satisfied by the newly generated angular momenta and the splitting

parameter x,

(J I
14)

2 − (J I
23)

2 =
1

π2
q2 cos2 x . (3.13)

This equation determines x as a function of q and ∆ := (J I
14)

2 − (J I
23)

2.

3.2 Relations between outgoing charges

The goal now is to eliminate the parameters x and q related to the splitting point and initial

string length, and express all conserved charges in terms of a minimal set of independent

ones. Recall that before the split, the input data which determine all the string charges

are the total momentum J and the filling fraction α = J34/J . The energy E(α,J ) is

expressed in terms of these two parameters through (2.23), which can be compared with

the gauge theory order by order in the 1/J expansion.

The split introduces only one extra free parameter, namely the point x at which the

string splits, while the number of measurable charges doubles: αI ,αII , J I and J II . Hence

after the split, the number of dependent quantities, as well as the number of functional

relations between them (which should be compared to the gauge theory) is larger. Depend-

ing on which quantities we want to relate, the choice for the set of independent parameters

might be different.

The first functional relation we want to establish is the relation between the two angular

momenta carried by the first part of the string,

β12 :=
J I

12

J12
, β34 :=

J I
34

J34
. (3.14)

where the total momentum J is expressed as

J := J I
12 + J II

12
︸ ︷︷ ︸

=:J12

+J I
34 + J II

34
︸ ︷︷ ︸

=:J34

. (3.15)

Combining the equations (3.3) and (3.4) with equations (2.15) and (2.16) one deduces that

β12 =
1

2

(

1 +
E(x; q)

E(q)

)

, (3.16)

β34 =
1

2

(

1 +
F (x; q) − E(x, q)

K(q) − E(q)

)

. (3.17)

The parameter q appearing in these equations is given as a series in 1/J with coefficients

fixed by the data of the unsplit string (see equations (2.22), (2.24) and (2.25)). The splitting

point x should now be eliminated by a combination of global charges of the outgoing strings,

which is at our disposal. We could choose either β12, β34 or something like the string length
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fraction
J I

12+J I
34

J
as the free parameter of the splitting process. Any such choice will lead

to an expansion of x in 1/J 2,

x = x0 +
x1

J 2
+
x2

J 4
+ . . . . (3.18)

In the remainder of this section we shall choose β12 as the new parameter. This yields the

first two coefficients of (3.18) as

β12 =
1

2

(

1 +
E(x0; q0)

E(q0)

)

, (3.19)

x1 =
q1
2q0

E(q0)F (x0; q0) −K(q0)E(x0; q0)

E(q0)
√

1 − q0 sin2 x0

, (3.20)

where q1 is given in (2.25) and induces a 1/J 2 expansion for β34. Substituting the expansion

for q and x in the second equation (3.17), one is left with the desired first functional relation,

namely β34 = β34(β12, α,J ), given as a series in 1/J

β34 = β0
34 +

β1
34

J 2
+ . . . , (3.21)

β0
34 =

1

2

(

1 +
F (x0; q0) − E(x0, q0)

K(q0) − E(q0)

)

, (3.22)

β1
34 =

2 q0 x1

(

1−sin2 x0 [q0+(1−q0) (K(q0)−E(q0))]

)

+(K(q0)−E(q0)) q1 sinx0 cos x0

4 (E(q0)−K(q0))2 (q0−1)
√

1−q0 sin2 x0

. (3.23)

One might wonder whether from the gauge-theory perspective it makes sense for the split-

ting parameter x and the outgoing angular momentum fraction β34 to be dependent on J .

After all, the splitting Hamiltonian commutes with the R-charge operators J12 and J34.

Hence, going up higher in perturbation theory should not induce coupling-constant de-

pendent modifications to the R-charges of the outgoing strings. However, the reason why

(3.21) is a sensible result is that the semi-classical string calculation captures only a part

(namely the maximum) of the full quantum surface of the decay process. The position of

the maximum varies as we go higher up in perturbation theory. At each order in pertur-

bation theory, the most probable outgoing string with fixed J I
12 is carrying a different J I

34.

This effectively means that the maximal probability varies with J .

In figure 3 we plot a collection of functions β0
34(β12) for values of the filling fraction

before the split ranging from 0.05 to 0.5. These are all computed using the leading values

for the parameter q0. We choose to restrict to this region of the filling fraction since the

folded string solution (2.3) does not posses a J12 ↔ J34 symmetry3 and only the solutions

with α < 0.5 have been identified on the gauge side [13]. The solutions with α > 0.5

are conjectured to correspond to operators of higher bare dimension, which do not have a

BMN limit. Note that figure 3 possesses a symmetry with respect to the point (0.5, 0.5) as

a consequence of the geometry of the folded string (ψ(σ) = ψ(π − σ)). Note also that the

point (1, 1) corresponds to the unsplit string.

3On the other hand the sigma model is, as expected, invariant under this symmetry. The implementation

of this symmetry requires the simultaneous transformations φ1 ↔ φ2, and ψ ↔ π

2
− ψ.
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Figure 3: Plot of the relation between β12 (horizontal) and β0

34
(vertical) as defined in (3.14). The

various curves correspond to various values for the filling fraction α ∈ [0.05, . . .0.5].

The second functional relation we want to obtain is a relation between the energy of

the first outgoing piece EI and the parameters (J , α, β12). Eliminating κ, a, ω1 and ω2 from

equation (3.11) using (3.12), (3.1) and (3.3) leaves us with

q

π2
=

(EI)2
(K(q) + F (x; q))2

− (J I
12)

2

(E(q) + E(x; q))2
, (3.24)

which is the split analogue of (2.20). The “mirror” equation for the second half of the string

is obtained from (3.24) by replacing the indices I → II and x→ −x. Using equations (3.16)

and (3.17), this can be simplified to

4

π2
q =

(EI)2
[β34 K(q) + (β12 − β34)E(q)]2

− (J12)
2

E(q)2
. (3.25)

Combining this with (2.20) we learn that

EI =
(

β34 + (β12 − β34)
E(q)

K(q)

)

E , EII = E − EI . (3.26)

This equation, together with equation (3.17) for β34 and equation (2.22) for q, defines

EI/II(J , α, β12) as a series in 1/J ,

EI/II = J EI/II0 + EI/II1

1

J + . . . . (3.27)

The first coefficient in the expansion is given by

EI0 =
J I

12

J +
J I,0

34

J = (1 − α)β12 + αβ0
34 , (3.28)

and is in agreement with the (trivial) gauge theory prediction: the two decay products

(single trace operators) have engineering dimensions JI12 and JI,034 . In figure 4 we plot

the energy of the first string piece as a function of β12, for various filling fractions. The

coefficient at order 1/J of (3.27) reads

EI1 = 2
π2 K(q0)

[

(K(q0) − E(q0))β
0
34 (q0 − 1) + β12E(q0) q0

]

+ β1
34 (1 − E(q0)

K(q0)
) , (3.29)
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Figure 4: The energy EI
0 of the first outgoing string as a function of β12, for various filling fractions

α ∈ [0.05, . . . , 0.5]. The straight line corresponds to α = 0.5.
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Figure 5: The combination of new angular charges ∆ := (J I
14)

2 − (J I
23)

2 plotted as a function of

β12, again for α in the range [0.05, . . . , 0.5]. The upper curve corresponds to α = 0.5.

which yields a prediction of the anomalous dimension at one loop of the first decay product

(single trace operator) in the dual gauge theory.

The third functional relation is obtained by eliminating x from (3.16) and (3.13), after

which one can express ∆ := (J I
14)

2 − (J I
23)

2 as a function of β12 in an expansion in 1/J .

The corresponding plot is given in figure 5.

3.3 Higher charges and traces of integrability in the splitting process

Thus far we have only discussed the behavior of the string energy and angular momenta

under the decay process. However, the classical string sigma model is known to possess

an infinite number of local, conserved and commuting charges Qn due to its integrability

[21, 22, 23], the first non-vanishing of which is the Hamiltonian Q2 = H. These were

written down explicitly in the work of [24] for the folded string solution in terms of a

generating functional. On the other hand, one does not expect the string sigma model to

remain integrable once string interactions are included (i.e. when gs 6= 0). This may be

seen explicitly from the dual gauge theory side: nonplanar graphs break the integrability
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of the planar theory4. Nevertheless it is obvious that, for the semi-classical decay process

we are studying here, the higher charges Qn are conserved. This conservation follows from

the same logic that was used for the calculation of the energy and angular momenta. If

the initial charges are given via a charge density as Qn =
∫
dσ qn(σ, τ), then the charges of

the outgoing strings after the split are simply

QIn =

∫ 2πa

0
dσ qn(σ, τ) , QIIn = Qn −QI . (3.30)

Here one uses the charge densities qn(σ, τ) before the split. In appendix A we explicitly

derive the generating functional for the commuting charges of the outgoing strings by

generalizing the work of [24]. As a side remark let us note that this knowledge could in

principle be used to construct the explicit form of the outgoing string solutions XI(τ, σ)

and XII(τ, σ).

How is this result to be reconciled with the breakdown of integrability at gs 6= 0? Again

we need to remember that the quantum string decay leads to a full surface of possible decay

channels, which generically will not preserve the charges beyond Q2. A subset of channels

will, however, preserve all Qn. It is precisely this subsector which should capture the

semiclassical string decay analyzed in the previous subsections and is expected to dominate

the decay amplitude.

4. The decay from the gauge theory side

Let us now turn to the discussion of the splitting process in the dual gauge theory. Our

exposition will not be complete, but we will set the scene for the full calculation and point

out the technical difficulties that one will have to face.

In the large-N limit, the dilatation operator of N = 4 super-Yang-Mills factorizes as

the product of a universal space-time dependent factor times a combinatorial factor acting

on the fields inside composite operators. The string splitting vertex is encoded in the non-

planar piece of this dilatation operator. In the relevant SU(2) sector of two chiral complex

scalar adjoint fields Z and W the (space-time independent part of the) dilatation operator

is known to be [25]

D2 = −g
2
YM

8π2
Tr[Z,W ][Ž, W̌ ] , (4.1)

where Žab := δ/δZba is the matrix derivative (for a pedagogical derivation see [26]). The

action of this operator can be expressed in the language of spin chains, by considering the

action of D2 on two fields in an arbitrary single trace operator Tr(WAZB). One finds

D2 ◦ Tr(WAZB) =

g2
YM

8π2
TrA

(

Tr(WZB) − Tr(ZWB)
)

+
g2
YM

8π2
TrB

(

Tr(ZWA) − Tr(WZA)
)

. (4.2)

4Concretely, one observes degeneracies in the spectrum of planar N =4 super-Yang-Mills (the so-called

“planar parity pairs”) which may be attributed to the existence of a higher conserved charge [12]. These

degeneracies are lifted, however, by 1/N corrections: a clear signal of the breakdown of integrability.
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The planar (nearest neighbor) contribution is obtained when A is the identity operator:

Dplanar
2 =

g2
YMN

8π2

L∑

i=1

(δi,i+1 − Pi,i+1) , (4.3)

with Pi,j the permutation operator permuting the fields (spins) at sites i and j. The system

described by Dplanar
2 is nothing but the Heisenberg XXX1/2 model [20]. The non-planar

contribution may be written as

Dsplitting
2 =

g2
YM

8π2

∑

i,j

(δi,j − Pi,j)Sij , (4.4)

where the sum is over non-nearest neighbors and the splitting operator acts on sites i and j

as (φk ∈ Z,W )

Sij ◦ Tr(φ1 . . . φi−1φiφi+1 . . . φj−1φjφj+1 . . . φL) =

Tr(φ1 . . . φiφj . . . φL) Tr(φi+1 . . . φj−1) + Tr(φ1 . . . φi−1φj+1 . . . φL) Tr(φi . . . φj) . (4.5)

That is, we have a Heisenberg exchange interaction multiplied by a chain splitting operation

(see also [27] for a related discussion).

While the dilatation operator is thus under control, the initial gauge theory opera-

tor dual to the single folded string solution with angular momenta J12 and J34 is less

understood. The dual gauge operator may be written as

Tr(ZJ12WJ34) + . . . (4.6)

where the dots stand for suitable permutations of the Z and W ’s – which are of essential

importance for the evaluation of decay amplitudes! The spin chain picture has proved to

be very efficient for the task of diagonalizing Dplanar
2 for long operators (J → ∞) with the

technology of the Bethe ansatz. There every eigenstate of the “free” Hamiltonian Dplanar
2 is

parametrized by a set of Bethe roots λi with i = 1, . . . ,J34, which are determined through

the Bethe equations

(
λi + i/2

λi − i/2

)L

=
∏

k 6=i

(
λi − λk + i

λi − λk − i

)

,

J34∏

i=1

λi + i/2

λi − i/2
= 1 , (4.7)

where L := J12 + J34 = J . The corresponding eigenstate may then be written down

explicitly as follows. Denote by |{m1,m2, . . . ,mJ34
}〉L the single trace operator of length

L with W ’s appearing at positions mi, e.g.

|{1, 3, 4}〉L=7 = Tr(WZWWZZZ) .

Introduce the quasi-momenta pi and the scattering phases ϕij

pi := −i ln

(
λi + i/2

λi − i/2

)

, ϕi,j := −i ln

(
λi − λk + i

λi − λk − i

)

, (4.8)
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then the eigenstate of Dplanar
2 may be written down explicitly [28]5. It is the rather

formidable object

|ψ〉 = (4.9)

∑

1≤m1<m2<...

...<mJ34
≤L

∑

P∈PermJ34

exp
[

i

J34∑

i=1

pP(i) ·mi +
i

2

J34∑

i<j

ϕP(i),P(j)

] ∣
∣
∣{m1,m2, . . . ,mJ34

}
〉

L

where the second sum is over all J34! permutations of the labels {1, 2, 3, . . . ,J34}. As Bethe

showed in 1931 this is an eigenstate of the free Hamiltonian

Dplanar
2 |ψ〉 =

g2
YMN

2π2

J34∑

i=1

sin2
(pi

2

)

|ψ〉 . (4.10)

In order to make contact to our semiclassical string considerations we need to take the

thermodynamic limit L,J34 → ∞ with J34/L = α fixed. Due to the unknown structure

of the continuum limit of the permutation group the Bethe wave function |ψ〉 becomes a

monstrous object in this limit6. This is in stark contrast to the Bethe equations, which

actually simplify in the same limit. Even worse, we would now want to act with the splitting

Hamiltonian Dsplitting
2 of (4.4) on |ψ〉 in the thermodynamic limit, in order to describe the

quantum decay of the semiclassical folded string solution. This is the core of the problem

which hampers a direct analytic computation of the splitting in the gauge theory. In

principle one could attempt to address this problem numerically. Here however, one faces

technical limitations, as the minimal length of the spin chain for which distinguishable

structures limiting to the continuum folded string configuration start to emerge is 26 (with

half filling fraction) [10]. This implies that the wave function |ψ〉 contains 226 terms, most

of which have coefficients of the same order.

An alert reader might wonder whether the gauge theory again develops an effective

genus counting parameter J 2/N in the thermodynamic limit (J12, J34, N → ∞) as it does

in the BMN limit where J34 remains finite [3, 2]. It is very plausible that this is the case.

Indeed a simple pilot computation of the free theory two point function of two operators

of type (4.6) in the this limit confirms the expectation. One finds using the method of

“highways” [3] up to genus one

〈Tr(Z̄J W̄ J) Tr(ZJW J)〉 = N2J
(

1 +
1

N2

(

2
[
(

J + 1

3

)

+

(

J + 1

4

)
]

+ (J − 1)2
)

+ . . .
)

→ N2J
(

1 + 12
J4

N2
+ . . .

)

(4.11)

which displays the expected J4/N2 scaling behavior.

5For a nice hands-on review of this topic see [29].
6If one stays with a small number of impurities J34 and takes L → ∞ the state remains manageable

and is dual to excited states of the plane wave superstring in the BMN correspondence [1]. In this limit

one finds pi = ni/J with integer ni and ϕi,j → 0.
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It is instructive to look at the decay of a number of lower eigenstates of Dplanar
2 as toy

calculations exemplifying the general logic of the quantum decay. All eigenstates Dplanar
2

may be classified by Bethe roots, or equivalently by the values of the local, conserved

charges Qi. At one loop, these are given by the moments of the resolvent, and the first

nonvanishing charge corresponds to the one loop anomalous dimension of the state E = Q2.

On top of this, all states carry a representation of the global R-symmetry group. In

the SU(2) sector, these are realized through the operators

Jz ≡ J12 − J34 = Tr(WW̌ − ZŽ) , J+ = Tr(WŽ) , J− = Tr(ZW̌ ) , (4.12)

where, geometrically, the operators J12 and J34 correspond to the rotations in the two two-

planes W,W̄ and Z, Z̄. It is easy to check that the operators (4.12) obey an su(2) algebra:

[J+, J−] = Jz and [Jz , J±] = ±2J±. The full (planar and non-planar) dilatation operator

D2 indeed commutes with these operators: [D2, Jz] = 0 = [D2, J±]. Hence, the total spin

and the Jz charge of a given initial state is conserved in the decay process. Highest-weight

single trace states obey J− |HWS〉 = 0 and correspond to ensembles of Bethe roots at finite

values. Acting with J+ on |HWS〉 increases the number of impurities but leaves the energy

invariant. This corresponds to adding Bethe roots at infinity. Note also that expectation

values of (“non-Cartan”) operators Jx and Jy in the |HWS〉 obviously vanish.

All the local conserved charges of the Heisenberg XXX1/2 are known explicitly [30].

As we illustrate now, these are generically not conserved in the decay process. Explicitly,

the first three charges are given by [12]

Q2 = 2

L∑

i=1

(1 − Pi,i+1) ,

Q3 = 4

L∑

i=1

(Pi,i+1 Pi+1,i+2 − Pi+1,i+2 Pi,i+1) ,

Q4 =
L∑

i=1

( − 2Pi,i+1 + Pi,i+1 Pi+1,i+2 + Pi+1,i+2 Pi,i+1

+ Pi,i+1 Pi+2,i+3 Pi+1,i+2 + Pi+1,i+2 Pi,i+1 Pi+2,i+3

− Pi,i+1 Pi+1,i+2 Pi+2,i+3 − Pi+2,i+3 Pi+1,i+2 Pi,i+1) .

(4.13)

The odd charges have negative parity and either annihilate a highest-weight state, or pair

them to a partner of opposite parity, which is degenerate in energy. Let us for example,

look at the decay of two highest-weight states of length 9,

O9,4
− = − Tr(Z4WZW 3) + Tr(Z4W 3ZW ) + Tr(Z3WZ2W 3) − Tr(Z3W 3Z2W )

+ Tr(Z3WZWZW 2) − Tr(Z3W 2ZWZW ) q2 = 5, q4 = 1

O9,2
+ = Tr(Z7W 2) − Tr(Z6WZW ) q2 = 4, q4 = −16 , (4.14)

where we have also spelled out their charges with respect to the Q2 and Q4 operators. The

first state decays into Q4 non-conserving constituents:

Dsplitting
2 ◦ O9,4

− = 12
(

Tr(Z2)O7,4
− + Tr(ZW )O7,3

−

)

, (4.15)
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where
O7,4

− = Tr(Z2W 3ZW ) − Tr(Z2WZW 3) , q2 = 5, q4 = −5 ,

O7,3
− = Tr(Z3WZW 2) − Tr(Z3W 2ZW ) , q2 = 5, q4 = −5 .

(4.16)

The protected states Tr(Z2) and Tr(ZW ) have vanishing charges. Therefore Q4 is not

conserved in both decay channels. Note also that

J− ◦ O7,4
− = −O7,3

− J− ◦ Tr(ZW ) = Tr(Z2) J− ◦ {O9,4
− ,O7,3

− ,Tr(Z2) } = 0 . (4.17)

Hence a highest-weight state does not necessarily decay into products of highest-weight

states.

The highest-weight state O9,2
+ of (4.14) on the other hand has only a single decay

channel

Dsplitting
2 ◦ O9,2

+ = 8 Tr(Z2)O5,2
+ + (non Q2 preserving channels) , (4.18)

where

O5,2
+ = Tr(Z3W 2) − Tr(Z2WZW ) , q2 = 4, q4 = −16 (4.19)

Hence here the higher local charge Q4 is conserved.

In summary, by considering the decays of short operators, we see that the highest-

weight states do not need to decay into a product of highest-weight states, and that higher

charges are not preserved in this decay process. However, in the thermodynamic limit we

expect the decay to be dominated by the channels which do preserve all higher charges.

The outgoing states are not highest-weight states. This can be seen from the fact that

in the semiclassical calculations, equations (3.9) and (3.10) indicate that the expectation

values for the “non-Cartan” angular momenta, 〈J13〉 and 〈J24〉, are non-vanishing after the

decay.

5. Outlook

The folded spinning string for which we have calculated the classical decay process has

been identified on the gauge theory side [10] by solving the Bethe equations (4.7). In the

sector in which the number of impurities is odd, it appears as the first highest-weight state

above the vacuum. Using (4.10) it is possible to compute its energy directly from the Bethe

roots. For half-filling, an analysis of various spin chain lengths (up to length 46) has shown

that this energy is approximated by

E − J E0 =
0.356

J + . . . . (5.1)

This matches the result computed from (2.24) and (2.26) for α = 1/2.

In principle, one can apply the machinery of section 4 in order to study the decay

of this state. The charges which enter in the classical decay relations on the string side,

as depicted in figure 3–5, have direct analogues in the spin chain. As an example, the

parameters β12 and β34 are related to filling fractions α and αI and chain lengths L and LI

according to

β34 ↔ αILI

αL
, β12 ↔ (1 − αI)LI

(1 − α)L
. (5.2)
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As explained in the introduction, the splitting amplitude of the spin chain is expected to

attain its maximum over the semi-classical curves found in section 3.2.

However, as we have already alluded to in the previous section, the main obstacle is

the complexity of the Bethe wave function (4.9). Even for moderately large spin chains,

the Bethe state is a monstrous object, which complicates a brute force analysis through

a numerical treatment. One possible simplification can perhaps be obtained by using the

coherent state wave function of [31]. However, a potential problem in this approach seems

to arise from the inability to write down wave functions for the outgoing strings.

An additional guideline for a better analytic understanding is the existence of the higher

local charges. The decay channels in which these charges are conserved are expected to

correspond to semi-classical decay, and form only a small subsector of all possible channels.

We will return to this spin chain analysis in future work.

Finally an interesting question which deserves investigation concerns the circular string

solution of Frolov and Tseytlin [8]. This solution has also been successfully matched to

gauge theory [10]. Clearly the circular string is semiclasssically stable, as it does not self

intersect. How does this property reflect itself in the dual gauge or spin chain description?
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A. Generating function for commuting charges of the outgoing string

In the case of the O(6) model, an infinite set of commuting charges can be constructed using

the so-called Bäcklund transformations. Namely, given a particular solution Xµ
0 , by solving

a set of equations [22] one can derive a “dressed” solution Xµ(γ) (with Xµ(0) = Xµ
0 ) as

a power series in the spectral parameter γ. The coefficients in the series are determined

though certain recursive relations. The generating function for the charges is then obtained

from the dressed solution as

Γ(γ) =

∫
dσ

4π

(
γ(X(γ) ·Xξ) + γ3(X(γ) ·Xη)

)
, (A.1)

where ξ = 1
2 (τ + σ) and η = 1

2(τ − σ), while subscripts denote partial derivatives. In the

case of the folded string, a solution to the Bäcklund transformation has been constructed

exactly (to all orders in γ) in [24] and is given by

Zi(γ) ≡ Xi + iXi+3 = ri(σ, γ)e
iαi(σ,γ)eiωiτ , (i = 1, 2, 3) . (A.2)

The ri are defined as

r1(σ, γ) = dn(
√

ω2
21σ + ν, t) , r2(σ, γ) =

√
t sn(

√

ω2
21σ + ν, t) , r3(σ, γ) = 0 . (A.3)

The constant phases αi are given by

cosα1 =
1 − γ2

1 + γ2

1

dn ν
, cosα2 =

1 − γ2

1 + γ2

cn ν

dn ν
. (A.4)

The functional dependence of the parameter ν on the spectral parameter γ is given by the

equation

1 − ω2
1

ω2
21

sn2 ν

cn2 ν
−
(

1 − γ2

1 + γ2

)2
1

1 − t2 sn2 ν
= 0 . (A.5)

In addition, the periodicity condition for the folded string implies the relation

π

2

√

ω2
21 = K(t) , ω2

21 ≡ ω2
2 − ω2

1 , (A.6)

which is (2.19) of the main text.

Inserting (A.2) into the expression for the generating function of the charges (A.1),

one obtains

Γ(γ; a) = γ

∫ 2πa

0

dσ

2π
ri(σ, γ)

[
(1 − γ2) cosαi r

′
i(σ, 0) + (1 + γ2)ωi sinαi ri(σ, 0)

]
, (A.7)

where here the constant a is the splitting parameter. For a = 1, this integral determines the

charges of the incoming string, and it has been computed in [24]. To evaluate this integral

for a generic value of the parameter a, and hence determine the generating functions for

commuting charges of the outgoing strings, one needs the following four integrals:

∫ 2πa

0

dσ

4π
r1(σ, γ) r1(σ, 0) =

dn ν

2K(t) sn2 ν

[

aK(t) − cn ν Π(a, t sn2 ν, t)
]

+
1

16K(t)

cn ν

sn ν
ln |A(ν, t)| , (A.8)
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∫ 2πa

0

dσ

4π
r2(σ, γ) r2(σ, 0) = − cn ν dn ν

2K(t) sn2 ν

[

aK(t) − Π(a, t sn2 ν, t)
]

− 1

16K(t)

1

sn ν
ln |A(ν, t)| , (A.9)

∫ 2πa

0

dσ

4π
r1(σ, γ) r

′
1(σ, 0) =

cn ν

π sn3 ν

[

dn2 ν(K(t)a− Π(a, t sn2 ν, t))

+ sn2 ν (K(t)a− 1
4E(ã, t))

]

− 1

8π

dn ν

sn2 ν
ln |A(ν, t)| , (A.10)

∫ 2πa

0

dσ

4π
r2(σ, γ) r

′
2(σ, 0) =

1

π sn3 ν

[

cn2 ν dn2 νΠ(a, t sn2, t) + sn2 ν 1
4E(ã, t)

− dn2 νK(t)a
]

− 1

8π

dn ν cn ν

sn2 ν
ln |A(ν, t)| , (A.11)

where

A(ν, t) = t sn2 ν sn2
(
4K(t)a

)
− 1 and ã = am

(
4aK(t), t

)
. (A.12)

Here Π(a,m2, t) is the incomplete elliptic integral of the third kind, defined as

Π(a,m2, t) =
K(t)

2π

∫ 2πa

0

dσ

1 −m2 sn2
(

2
πK(t)σ, t

) . (A.13)

The expression for the generating function for the charges of the outgoing string of

“length”-a can be now be written as

Γ(γ; a) = Γ(γ)I + ΓII(γ) ,

ΓI(γ; a) = − γ cn γ

(1 + γ2)π dn ν sn3 ν

(
B(ν, γ)K(t) + C(ν, γ)Π(a, t2 sn2 ν, t)

)
,

ΓII(γ; a) =
1

4π

γ

1 + γ2

1

sn2 ν

(
(1 + γ4) − 2 cn2 νγ2

)
ln |A(ν, t)| ,

(A.14)

where the functions B(ν, γ) and C(ν, γ) are given by

B(ν, γ) = (1 − γ2)2
(
(
sn2 ν − dn2 ν

)
a+

cn2 ν

a
− 1

)

− (1 + γ2)2
dn2 ν

a
+ 2(1 + γ4) dn2 ν ,

C(ν, γ) = (1 − γ2)2
(

cn2 ν

(
1

a
− 1

)

+
dn2 ν

a
− sn2 ν dn2 ν

)

− (1 + γ2)2 cn2 ν dn2 ν ,

(A.15)

and the function A(ν, t) is given in (A.12).
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