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ABSTRACT 
Motivation:  Cellular phenotypes are determined by the dynamical activity of networks 
of co-regulated genes. Elucidating such networks is crucial for understanding normal cell 
physiology and complex pathologic phenotypes, but existing methods for the “reverse 
engineering” of genetic networks from microarray expression data have been successful 
only for lower eukaryotes with simple genomes. Here we present ARACNE, a novel 
approach designed specifically to scale up to the complexity of transcriptional regulatory 
networks in mammalian cells, yet general enough to address a much wider range of 
network deconvolution problems. This method uses the data processing inequality to 
eliminate the vast majority of indirect interactions inferred by pairwise information-
theoretic analysis.  

 
Results:  We prove that the reconstructed topology is exact for large enough data sets if 
the underlying interactions form a tree, and we show that the algorithm works well in 
practice, even in the presence of loops and complex network topologies. We assess 
ARACNE’s ability to reconstruct transcriptional regulatory networks using synthetic data 
and large-scale microarray profile data from human B cells. ARACNE significantly 
outperforms both Relevance Networks and Bayesian Networks on the synthetic datasets, 
while achieving extremely low error rates. Application to the deconvolution of genetic 
networks in human B cells demonstrates ARACNE’s ability to infer a significant number 
of putative transcriptional targets of the c-MYC proto-oncogene.  

 
Availability:  ARACNE is implemented in the BioWorks platform, which is freely 
available at: http://amdec-bioinfo.cu-genome.org/html/BioWorks.htm. 

 
Contact:  califano@c2b2.columbia.edu 

 
Supplementary Information:  Supplementary Information and all data used in this 
paper are available at: http://www.c2b2.columbia.edu/research/supplemental/aracne-
bioinformatics.html.  
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1 INTRODUCTION 
1.1 Biological Background and Significance 
Cell phenotypes are determined by the differential expression of thousands of genes and 
their products – an activity choreographed by a complex network of interactions that 
control common functions, such as the formation of transcriptional complexes or the 
availability of signaling pathways. Thus it is becoming increasingly clear that cellular 
phenotypes, and the complex range of mechanisms determining their selection, cannot be 
fully understood unless the function of the individual genes is elucidated in the context of 
the networks in which they operate. Identifying this organization is especially crucial to 
dissecting physiology of pathological cells, such as cancerous ones, where the alterations 
of multiple oncogenes and tumor suppressor genes result in profound and complementary 
disregulations of normal cellular pathways.  
Genome-wide clustering of gene expression profiles (Eisen, Spellman et al. 1998; 
Tamayo, Slonim et al. 1999) provides an important first step towards the identification of 
cellular networks. However, the organization of genes into co-regulated clusters is too 
coarse a representation to provide clues towards the identification of individual 
interactions. This is because as biochemical signals travel through cellular networks the 
expression of many genes that interact only indirectly may become strongly correlated, as 
has been shown for Cyclin D1 and E2F targets (Lamb, Ramaswamy et al. 2003). More 
generally, as has long been recognized in statistical physics, a long range order (that is, a 
high correlation among indirectly interacting random variables) can easily result from 
only short range, pairwise interactions (Ma 1985). Thus one cannot use correlations, or 
any other local dependency measure, as a tool for the reconstruction of interaction 
networks without additional assumptions.  
Within the last few years a number of more sophisticated approaches for the reverse 
engineering of cellular networks (also called deconvolution) from gene expression data 
have emerged. The goal of such methods, briefly stated, is to produce a high-fidelity 
representation of the cellular network topology as a graph, where genes are represented as 
nodes and direct regulatory interactions as edges connecting the nodes. While scores of 
different methods have been proposed [for a review see (Rice and Stolovitzky 2004)], a 
broad taxonomical organization suggests four major categories. The first includes 
optimization methods based on the maximization of a high-dimensional objective 
function associated with different network topologies, such as Bayesian networks 
(Hartemink, Gifford et al. 2001; Friedman 2004) or Chain Functions (Gat-Viks and 
Shamir 2003). A common objective function is the log-probability of the network 
topology given the observed data. The second category includes a variety of regression 
techniques to fit the observed data to an empirical a-priori model of the underlying 
biochemical interactions (de la Fuente, Brazhnik et al. 2002; Gardner, di Bernardo et al. 
2003; Tegner, Yeung et al. 2003). A third group includes integrative bioinformatics 
approaches which combine data from a number of independent clues, such as known 
protein-protein or protein-DNA interactions (from databases or literature), expression 
data, or DNA binding motifs (Ideker, Thorsson et al. 2001; Steffen, Petti et al. 2002; 
Middendorf, Kundaje et al. 2004). The fourth category includes statistical/information 
theoretical methods (Butte and Kohane 2000; Rice, Tu et al. 2004), which define two-
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way or higher-order probabilistic measures of gene correlation to distinguish potential 
interactions from background noise. 

Overall, all available approaches suffer from one or more limitations including overfitting 
(common to regression or optimization methods); exponential complexity and reliance on 
non-realistic network models (typical of most optimization methods, including Bayesian 
Networks); or a critical dependency on data that are only available for simple organisms 
(as is the case for most integrative methods). These limitations have relegated the 
successful application of such methods to organisms with relatively simple genomes, 
such as the yeast Saccharomyces cerevisiae. As of today, there is no reported example of 
the application of reverse-engineering algorithms to the genome-wide deconvolution of 
complex mammalian networks. 
This paper introduces a novel, information-theoretic algorithm called ARACNE 
(Algorithm for the Reconstruction of Accurate Cellular Networks) for the reverse-
engineering of transcriptional regulatory networks from microarray expression data. 
Using a realistically implemented simulated dataset, we show that ARACNE compares 
very favorably with existing methods, especially with respect to false positive rates 
(which are critical in guiding further biological validation experiments). We validate this 
finding biologically by demonstrating ARACNE’s ability to identify putative 
transcriptional targets of the c-MYC proto-oncogene by analyzing a large-scale set of 
microarray expression profiles from human B cells. 

Although we present this method in the context of transcriptional regulation, we note that 
this is just one (albeit very important) example of a problem where interaction graphs 
must be inferred from experimental samples. Other such problems include protein 
interaction networks (Giot, Bader et al. 2003; Iossifov, Krauthammer et al. 2004), social 
networks (Barabasi, Jeong et al. 2002), graphical models for representing uncertainty in 
learning (Pearl 1988), models in statistical physics (Kabashima and Saad 2001; Mezard 
and Parizi 2001), and many others  The ARACNE algorithm is general enough to be 
applicable to this entire class of problems. 

1.2 Theoretical Background 
Several factors have impeded existing methods from reliably reconstructing the complex 
genetic networks of mammalian cells using currently available data and computation. 
First, for higher eukaryotes, biological manipulations are difficult and costly.  Thus, at 
best, different cell populations harvested from different individuals capture random 
steady-states of the underlying biochemical dynamics. The absence of time series data 
precludes usage of methods like (Wiggins and Nemenman 2003) and others reviewed 
therein to infer temporal associations and thus plausible causal relations among genes. 
With little temporal data or specifically targeted biological experiments, only steady-state 
statistical dependences can be studied, which are not obviously linked to the underlying 
physical dependency model.  

Compounding this constraint is a second problem: there is no universally accepted 
definition of statistical dependencies in the multivariate setting [See (Joe 1997; 
Nemenman 2004) for a review of alternatives]. In this work we adopt the definition 
introduced in (Nemenman and Tishby Submitted), which builds on ideas which have been 
discussed in the literature on Markov networks for several years (Pearl 1988; Kabashima 
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and Saad 2001). Briefly, by analogy with statistical physics, we write the joint probability 
distribution (JPD) of the stationary expressions of all genes, ({ })iP g , 1, ,i N= K , as:   

 ({ })

, , ,

1({ }) exp ( ) ( , ) ( , , ) iH g
i i i ij i j ijk i j k

i i j i j k
P g g g g g g g e

Z
φ φ φ − 

= − − − − ≡ 
 
∑ ∑ ∑ L  (1) 

where N is the number of genes, Z is the partition function, ( )i igφ are potentials, and 
({ })iH g  is the Hamiltonian that defines the system’s dynamics. Within such a model, we 

can assert that a set of variables interacts if and only if the single potential that depends 
exclusively on these variables is nonzero. ARACNE aims precisely at identifying which 
of these potentials are nonzero and eliminating those that are zero even though their 
corresponding marginal JPDs are significantly non-uniform.  

Note that the expansion in Eq. (1) does not define the potentials uniquely, and additional 
constraints are needed to avoid the ambiguity. The most natural choice (Nemenman 2004) 
is to determine φK  by means of the maximum entropy approximations (Janes 1957) to 

1( , , )NP g gK  consistent with various marginals, so that constraining an n-way marginal 
defines its corresponding potential. For example, ( ) log ( )i i ig P gφ = − , but higher order 
potentials generally cannot be written in a closed form. We refer the reader to 
(Nemenman 2004; Nemenman and Tishby Submitted) for details.  

Additionally, we note that, by minimizing the Hamiltonian, the formulation in Eq. (1) 
allows us to design principled approaches to simulate the steady state behavior of the 
cellular network from its potentials. As discussed in the next section, depending on the 
level of approximation, it may be quite feasible to reconstruct the potentials from the 
marginal JPDs (which can be estimated from the experimental samples) under the 
maximum entropy approximation.  This approach will be explored in future publications. 

1.3 Approximations: The interaction structure 
Given the relatively small number of microarray samples realistically obtainable, it is 
infeasible to infer the exponential number of potential n-way interactions suggested by 
the expansion in Eq. (1). Rather, a set of simplifying assumptions must be made about the 
variable dependency structure. Eq. (1) provides a principled and controlled way to 
introduce such approximations. For instance, the simplest model is one where genes are 
assumed independent, i.e., ( ) ( ){ }i i iH g gφ=∑ , such that first-order potentials can be 
evaluated from the marginal probabilities, ( )iP g , which are in turn estimated from 
experimental observations. As more data become available we should be able to reliably 
estimate higher order marginals and incorporate the corresponding potentials 
progressively, such that for M → ∞  the complete form of the JPD is restored, where M is 
the number of experimental samples. In fact, 100M > is generally sufficient to estimate 
2-way marginals in genomics problems, while ( , , )i j kP g g g  requires about an order of 
magnitude more samples. Thus ARACNE truncates Eq. (1) at the pairwise interactions 
only, ( ) ( ) ( )

,

{ } ,i i i ij i j
i i j

H g g g gφ φ= +∑ ∑ . 
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Within this approximation, ARACNE declares two genes to be non-interacting if they are 
statistically independent (i.e. ( , ) ( ) ( )i j i jP g g P g P g≈ ), and does not model more complex 
interactions. However, the algorithm further identifies gene pairs that, even though 
non-independent, have a corresponding zero potential, thus removing the vast majority of 
false positive interactions.  
This formulation is reminiscent of spin glasses on random networks (Mezard and Parizi 
2001; Yedidia 2001)}, particularly if the gi are binary. In this case, the genes are the Ising 
spins, and truncations to the first, second, or the third order potentials are steps towards 
the mean field, Bethe, and Kikuchi variational approximations (Bethe 1935; Kikuchi 
1951; Opper and Winther 2001; Yedidia 2001). An important distinction is that in 
physics one searches for ({ })iP g% , a variational approximation to the true JPD, ({ })iP g , 

that minimizes ( ) log /KL P
D P P P P≡

%
% %  within a given class of P% , while the definition of 

(Nemenman 2004) is equivalent to minimizing ( )KLD P P% . This is because statistical 
physics aims at calculating various spin statistics given an interaction network. In 
particular, low order marginals PK  are unknown and cannot be used in averaging. On the 
other hand, we are here solving the inverse problem – reconstructing the network given 
the known marginal distributions.  
1.4 Approximations: The network topology 
Even considering only pairwise interactions, the problem of reverse engineering the 
network is still nontrivial. For example, consider the case in which ({ })iP g  is a 
multivariate Gaussian. The full joint distribution is then specified by the inverse of the 
covariance matrix 1

ijc− . In genomic applications, 1
ijc−  is expected to be sparse; 

 that is, relatively few genes interact directly. However, if 0ijc ≠  and 0jkc ≠ , then 
generically 0ikc ≠ . Thus experimentally measured ijc  will not reflect the true topology of 
the network interactions. Furthermore, inversion of large sparse matrices is quite 
sensitive to small errors; thus the inverse of the measured ijc  will not be sparse and 
simple thresholding will not lead to an accurate reconstruction of the network topology. 
The problem is even more complex for non-Gaussian distributions (which are far more 
realistic in actual cellular networks, where interactions are generally non-linear), where 
mutual information (see Section 2.1) replaces the ijc  as the measure of statistical 
similarity. Since the number of potential pairwise interactions is quadratic in the number 
of genes, this presents a formidable challenge to all network reconstruction methods, 
which generically suffer from false positives, as is the case, for instance, for the 
Relevance Networks approach. 
To date, no method has been proposed to solve this issue exactly and to reconstruct an 
arbitrary two-way interaction network reliably from a finite number of samples in a 
computationally feasible time. However, if the regulatory network can be represented as a 
tree, an algorithm that can solve the problem exactly is computationally tractable. In fact, 
as will be shown in the next section, the ARACNE algorithm can “reverse engineer” such 
tree networks exactly in polynomial time in the limit M → ∞ , when statistical 
fluctuations in estimating pairwise marginals are small. The method works for marginals 
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of any form. Furthermore, the algorithm is robust to violations of the tree assumption as 
long as a local tree-like structure is dominant. This is because nodes in a network 
generally decorrelate rather quickly, and interactions over more than a few separating 
edges are generically weak, reducing the impact of large loops. This is a good 
approximation for biological networks, which are believed to be sparse; consequently, the 
average size of a random loop is greater than a few genes, unless some yet unknown 
evolutionary pressure prefers tighter control loops [a notable exception is the feed 
forward loop, found to be over-represented in biological circuits (Mangan and Alon 
2003)]. Thus, as will be shown both from synthetic and from experimental data, 
ARACNE is very successful in reconstructing complex networks with a large number of 
loops, even from relatively small sample sizes. We note that other methods can, in 
principle, reconstruct tree topologies. ARACNE’s advantage derives, in particular, from 
its provably exact reconstruction of tree topologies, low computational complexity, small 
data size requirements, and robustness to violations of the tree assumption. 

2 ALGORITHM 
ARACNE relies on a two-step process. First, candidate interactions are identified by 
estimating pairwise gene-gene mutual information ( , )i jI g g , an information-theoretic 
measure of relatedness, and by filtering them using an appropriate threshold, I0, 
computed for a specific p-value, p0, in the null-hypothesis of two independent genes.  
This step is basically equivalent to the Relevance Networks method (Butte and Kohane 
2000), and, as such, suffers from critical limitations. In particular, as discussed, while 
physical interaction will likely result in co-regulation, the reverse is not true. That is, 
genes separated by one or more intermediaries (indirect relationships) may be highly co-
regulated without implying physical interaction, giving rise to false positives.  

Thus in its second step, ARACNE removes the vast majority of indirect candidate 
interactions using a well-known property of mutual information, the data processing 
inequality (DPI), that has not been previously applied to the reverse engineering of 
genetic networks. Introduction of the DPI produces a dramatic difference in the 
performance of the algorithm and, in particular, results in a remarkable reduction of false 
positive interactions with minimal impact false negatives. 

We now discuss some aspects of the algorithm, present proofs related to its performance, 
and then proceed to the results of its applications to natural and synthetic networks. 

2.1 Mutual Information 
Mutual information (MI) for a pair of random variables, x and y, is defined as  

 ( ) ( ) ( ) ( ), ,I x y S x S y S x y= + − , (2) 

where ( )S t  is the entropy of an arbitrary variable t . For a discrete variable the entropy is 
the average of the log-probability of the states: 

 ( ) ( ) ( ) ( )log logi i i
i

S t p t p t p t= − = −∑  (3) 

where ( ) ( )i ip t Prob t t= =  is the probability of each discrete state (value) of the variable, 
and logarithms are binary. For continuous variables the entropy is infinite, but the mutual 
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information remains well defined and can be computed by replacing ( )S x  with the 
differential entropy, which differs from Eq. (3) in that the log-probability density (rather 
than the log-mass) is averaged. 

Like more familiar correlation measures (e.g. Pearson correlation), MI measures the 
degree of statistical association between two variables. For instance, for normally 
distributed covariates it is related to the Pearson correlation. However, while other 
correlations may be zero even for manifestly dependent variables (such as between a 
variable symmetrically distributed around zero and its square), MI is guaranteed to be 
nonzero iff any kind of statistical dependence exists. In fact, it is the only measure of 
statistical association between two variables that satisfies some simple axioms 
(Nemenman and Tishby Submitted). Additionally, MI possesses some critical properties, 
like the DPI (discussed later), that make it especially desirable for use in network 
reconstruction applications.  
Estimation of mutual information from finite data sets has been extensively studied in the 
literature (Beirlant, Dudewicz et al. 1997; Strong, Koberle et al. 1998; Nemenman, 
Shafee et al. 2002; Kraskov, Stoegbauer et al. 2004; Nemenman, Bialek et al. 2004). In 
general, assuming that the JPDs associated with individual gene pairs are relatively 
smooth (a realistic hypothesis since system and measurement noise significantly smooth 
the data), MI can be estimated reliably from a relatively small number of samples (~100) 
using a number of methods. We chose a computationally efficient Gaussian Kernel 
estimator (Beirlant, Dudewicz et al. 1997). Given two measurement vectors { }ix  and{ }iy , 
the estimator computes:  

 ( ) ( )
( ) ( )

,1{ },{ } log i i
i i

i i i

f x y
I x y

M f x f y
= ∑  (4) 

where ( , )f x y  and ( )f x  are Gaussian kernel density estimators defined as: 

 ( ) ( ) ( )2 2

2 2
1, exp

2 2
i i

i

x x y y
f x y

h M hπ
 − + − = − 
  

∑ , ( ) ( )2

2
1 exp

22
i

i

x x
f x

hhMπ
 − = − 
  

∑ , 

where ( )h h M= is the kernel width. This estimator is asymptotically unbiased 
for M → ∞ , as long as ( ) 0h M →  and 2[ ( )]h M M → ∞ , e.g. 1/( ) th M M −∝ , 2t > .  
Gaussian Kernel Width: While the estimator is asymptotically unbiased for any ( )h M  
that satisfy the above conditions, the choice of ( )h M  that removes the bias for a finite 
M  is critically dependent on M  and on the JPD being analyzed, specifically on its 
smoothness. In general, as h grows, the kernel density estimator becomes almost uniform 
and MI is underestimated. In contrast, small h  produces peaked distributions with 
overestimated MI. This is illustrated in Figure 1, which shows that the average absolute 
error on the MI estimate, | |I I− , is highly sensitive to the choice of the kernel width 
(here I is the true value of the MI, and I  is its estimate). While good methods for 
determining the kernel width exist [see e.g. (Nemenman and Bialek 2002)], it is 
computationally costly to apply such analysis to each gene pair. Fortunately, ARACNE’s 
performance does not depend directly on the accuracy of the MI estimate, but rather on 
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the accuracy of the estimation of MI differences. For instance, determining if MI is 
statistically significant requires testing whether 0,ijI I≥  where ( , )ij i jI I g g=  and 0I  is 
the threshold for statistical significance computed from Monte Carlo. Similarly, the DPI 
(Section 2.3) only requires ranking the mutual informations, for which the estimate of 
their differences is also sufficient. 

Producing reliable estimates of the MI differences, ,ij klI I− is a much easier task because 

the bias tends to cancel out, especially for ,ij klI I≈  which corresponds to the most error-
prone cases in ranking relative MIs. In particular, selecting a single “ensemble best” 
value of h  (see below) for the data in question, we expect that the estimated MI may be 
biased. That is, I I b ε= + + , where b  is the bias, and ε  is the zero-mean random 
fluctuation. From the work on estimation of MI for discrete variables (Strong, Koberle et 
al. 1998), we expect the bias to be a function of marginal and joint entropies. Thus for 
well-sampled marginals and an undersampled joint, we have ( , )b b I h≈ , and the biases 
cancel out for similar values of MIs. This is especially true since, due to the same 
underlying noise sources, the JPDs for various gene pairs have similar smoothness 
properties.  

Figure 1 presents a numerical analysis in support of this argument. The solid brown curve 
shows the average number of errors in ranking pairs of MIs. Indeed, the minimum of the 
function is very broad, as opposed to that for the MI estimate, and rank ordering of MI is 
rather insensitive to the kernel width. That is, even when I s are uncertain, the order of 
the estimates remains stable. Thus instead of selecting a different h  for each gene pair, 
we settle for a single value that minimizes | |I I−  for the Gaussian distributions shown 
in Figure 1 for an equivalent number of samples as in the data in question. In Section 
3.3.3 we demonstrate that this choice of the kernel width largely corresponds to the 
optimal value for reconstruction of the synthetic network. While, in view of this 
discussion, uniform h  results only in a minimal performance loss, in future publications 
we plan to explore determining h  for individual gene pairs to further increase the 
accuracy of our estimates. 
2.2 Statistical Threshold for Mutual Information 
Since the mutual information is positive semi-definite, its evaluation from random 
samples gives a positive value even for variables that are, in fact, independent.  Therefore, 
we eliminate all edges for which the null hypothesis of independent genes cannot be ruled 
out with a given certainty. To this extent, we randomly shuffle the expression of genes 
across the various microarray profiles, similar to (Butte and Kohane 2000). We then 
evaluate the MI for such manifestly independent genes and empirically estimate the 
fraction, ,p of the estimates above some threshold value 0.I  Inverting the relationship 
tells us which MI estimates are below the threshold and which corresponding edges are to 
be eliminated if we require a p-value not greater than .p  This is done for different sample 
sizes M and for 105 gene pairs so that reliable estimates of 0( )I p  are  produced up 
to 410p −= . Extrapolation to smaller p-values is done using: 

 0
0( | 0) MIp I I I e α−≥ = ∝ , (5) 
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where the parameter α  is fitted from the data. This formula is based on the intuition of 
the large deviation theory (Cover and Thomas 1991), which for discrete data and 
unbiased estimators suggests 0

0( | 0) MIp I I I e−≥ = ∝ . As mutual information in the 
continuous case can be estimated by finely discretizing the variables, a similar result 
should hold. We then use the parameter α  to account for possible biases of the estimator 
at fixed h , producing excellent agreement with numerical experiments (see supplemental).  

2.3 Data Processing Inequality 
The DPI (Cover and Thomas 1991) states that if genes g1 and g3 interact only through a 
third gene, g2, [i.e., if the interaction network is 1 2 3... ...g g g↔ ↔ ↔ ↔  and no 
alternative path exists between g1 and g3], then the following inequality holds 

 ( ) ( ) ( )1 3 1 2 2 3, min , ; ,I g g I g g I g g≤    . (6) 

Thus under some circumstances the least of the three MIs can come from indirect 
interactions only. Correspondingly, ARACNE starts with a network graph where each 

( ) 0,i jI g g I>  is represented by an edge (ij). The algorithm then examines each gene 
triplet for which all three MIs are greater than 0I  and removes the edge with the smallest 
value (see Figure 2). We emphasize that each triplet is analyzed irrespectively of whether 
one of its edges has been marked for removal by a prior DPI application to a different 
triplet. Thus the network reconstructed by the algorithm is independent of the order in 
which the triplets are examined.  
Theorem 1. If MIs can be estimated with no errors, then ARACNE reconstructs the 
underlying interaction network exactly, provided this network is a tree and has only 
pairwise interactions. 

Proof of Theorem 1. First, notice that for every pair of nodes gi and gk not connected by a 
true direct interaction there is at least one other node gj that separates them on the 
network tree. Applying the DPI to the (ijk) triplet leads to removal of the (ik) edge. Thus 
only true edges survive. Similarly, every removed edge is not present in the true network. 
Consider some (ijk) triplet. One of its genes, say gj, may separate the other two. In this 
case the removed edge (ik) is clearly not in the true tree. Alternatively, there may be no 
separating gene, and one may be able to move between any gene pair in the triplet 
without going through the third one. In this case none of the three edges is in the true 
graph, and any edge the DPI removes is fictitious. Thus all removed edges are indirect, 
while all remaining edges are factual. The network is reconstructed exactly. 

The algorithm is not guaranteed to reconstruct correct networks if loops are present (in 
fact, every loop with only three genes will be opened along the weakest edge). However, 
if loops are large, then locally the network looks like a tree. Thus, as in the corresponding 
discussion in statistical physics (Yedidia 2001), algorithms designed for trees still work 
well. This is because the system is not deterministic, and influence of a gene on another 
one falls off quickly with the separation between them. Additional long paths between 
two genes contribute only negligibly to statistical associations coming from direct 
interactions and are unlikely to impair ARACNE’s performance, as will become evident 
in the results section. In general, we expect that the performance will decrease in the 
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presence of large numbers of tight loops, especially 3-gene loops, which will be opened 
by the DPI on their weakest interaction.  

Additionally, we note that to minimize the impact of potential MI estimation errors, a 
tolerance, τ , may be introduced such that the DPI inequalities become of the form 

(1 )ij ikI I τ≤ − , and close values of MI are not pruned. Using such non-zero tolerance 
leads to persistence of some 3-gene loops. 
2.4 Algorithmic Complexity 
Because for a network of N genes there are at most N choose 3 gene triplets, ARACNE’s 
complexity is 3 2 2( )O N N M+ , where M is the number of samples and N is the number of 
genes. The first term relates to the DPI analysis and the second to the mutual information 
estimate. This compares favorably with optimization methods that must explore an 
exponential search space. In practice, the DPI is applied to a small subset of triplets for 
which all three edges survived the mutual information thresholding. Therefore, for large 
M, the computationally intensive part is generally associated with the second term 
(computing mutual information), which scales as 2 2( )O N M . As a result, ARACNE can 
efficiently analyze networks with tens of thousands of genes. 

3 RESULTS 
We study ARACNE’s performance on reconstructing networks using three different 
datasets: a small and well studied galactose metabolism network in S. cerevisiae, 
synthetic networks proposed by (Mendes, Sha et al. 2003), and a large mammalian 
genetic network inferred from gene expressions of human B lymphocytes. ARACNE’s 
performance is compared against Relevance Networks (RNs) and Bayesian Networks 
(BNs). RNs are important to characterize the improvement associated with the 
introduction of the DPI, while BNs have emerged as some of the most widely used 
reverse engineering methods and provide an ideal comparative benchmark. 
3.1 Comparative Algorithms 
A Bayesian Network is a representation of a JPD as a directed acyclic graph (DAG) 
whose vertices correspond to random variables 1{ , , }nX XK , and whose edges correspond 
to parent-child dependencies among variables, see (Pearl 1988) for an introduction and 
(Heckerman 1999) for a more recent tutorial. We implemented the BN algorithm in this 
work in accordance with (Hartemink, Gifford et al. 2001; Yu, Smith et al. 2002). In 
particular, we score graphs using the Bayesian scoring metric (Cooper 1992), for which 
we adopt a uniform prior over graphs and employ a Dirichlet prior over parameters to aid 
in the inference of undersampled conditional distributions of children given their parents. 
Such an approach inherently penalizes more complex graphs. Learning the most likely 
network requires exploring the entire graph space for the highest scoring model, which is 
an NP-complete problem (Chickering 1996). Thus heuristic procedures such as greedy 
hill climbing or simulated annealing are used to search for locally optimal graph 
structures. The comparative tests presented here use the greedy hill climbing algorithm 
with random restarts (various structure search methods were tested and observed to 
produce similar results). BN results were produced using the software from Nir 
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Friedman’s Computational Biology group at the Hebrew University (Friedman and 
Elidan 2004), which is among the best implementations of the method.  

The other algorithm used for comparison, Relevance Networks (Butte and Kohane 2000), 
computes mutual information for all gene pairs in a microarray dataset and infers that two 
genes are biologically related if they have the MI above a certain threshold. This 
approach is basically equivalent to the first step in the ARACNE algorithm, without 
introduction of the DPI. Therefore, we construct Relevance Networks by running 
ARACNE with a tolerance on the DPI of 100%. Note that ARACNE uses a different, 
more accurate mutual information estimator that the one proposed in the original work. 
3.2 Yeast Galactose Pathway 
We start with a very simple galactose metabolism network in S. cerevisiae, which was 
extensively studied by (Hartemink, Gifford et al. 2001) to test a Bayesian Network 
approach to genetic network reconstruction. This simple network is useful to highlight 
some potential pitfalls of Bayesian Networks that are addressed in the context of 
ARACNE. This network involves three genes, Gal80, Gal4, and Gal2, for which there is 
an accepted biochemical interaction model:  Gal4 activates transcription of Gal2, while 
Gal80 inhibits Gal4 post-translationally, by protein-protein interaction. Therefore, in the 
correct model, the expression of Gal2 is determined simultaneously by Gal80 and Gal4.  
Eleven distinct Bayesian Networks exist for a such three-gene system. Treating edges as 
non-directional for comparative purposes collapses the networks into eight topologies 
(Figure 3.a), whose scores can be evaluated given the data. The Bayesian Network 
paradigm is that the network most likely to have produced the data will have the highest 
score. However, in this case, an incorrect model (#1, Gal2 is only transcriptionally 
controlled by Gal80) has the highest score rather than the correct one (#4, Gal4 and 
Gal80 jointly control Gal2). Additionally, another model (#6, Gal4 and Gal2 jointly 
control Gal80) is equiprobable to the correct one, but is also wrong. This shows that even 
for a toy problem the large number of possible network configurations is an obstacle to 
the reconstruction of the correct topology. In particular, small sample size, the choice of 
priors, the choice of discretization boundaries, and the noise can all contribute to an 
incorrect reconstruction. For instance, the small sample size produces undersampled 
child-parent conditional distributions even when expressions are discretized to just three 
levels. More complex networks make the problem exponentially more difficult. 
We note, however, that the mutual information between Gal80 and Gal4 is much smaller 
than that in the Gal2-Gal80 and Gal2-Gal4 edges. Thus RNs can reconstruct the correct 
topology provided the mutual information threshold is chosen appropriately, while 
ARACNE does even better by removing the Gal4-Gal80 edge in its DPI step irrespective 
of the threshold (Figure 3.b). 

3.3 Synthetic Networks 

3.3.1 Networks Specification: The second series of comparisons uses synthetic 
transcriptional networks that consist of 100 genes and 200 interactions† organized in an 

                                                
† We will evaluate network recovery based on the number of interactions after eliminating auto-regulation 
and bidirectional edges. 
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Erdös-Rényi (random network) (Erdos and Renyi 1959) or a scale-free (Barabasi and 
Albert 1999) topology (see Figure 4). In the former each vertex of a graph is equally 
likely to be connected to any other vertex, while in the latter the distribution of the 
number of connections associated with each vertex follows a power law distribution 

( ) ~p k k γ− with 0γ > . Many real biological networks, including metabolic (Jeong, 
Tombor et al. 2000), protein-protein (Jeong, Mason et al. 2001), and transcriptional 
(Babu, Luscombe et al. 2004) ones have been shown to exhibit a scale-free topology. 
These synthetic network topologies and dynamics were proposed by (Mendes, Sha et al. 
2003) as a realistic platform for comparison of reverse-engineering algorithms because of 
(a) their realistic complexity, (b) the presence of many regulatory loops, (c) the presence 
of a few highly interconnected genes (for the scale-free version), and (d) the biologically 
motivated non-linear transcriptional dependencies among genes. These networks use a 
multiplicative Hill dynamics (Hill 1910) to model transcriptional interactions.   
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where  xi  is the concentration (expression) of the i-th gene. N I  and N A  are the number of 
upstream inhibitors and activators respectively, and their concentrations are 

 
I j  and Al . 

All other parameters ( ai ,  bi , 
 
IK j , AKl , nj , and ml ) are specified in (Mendes, Sha et al. 

2003). 

The synthetic expression value of each gene xi in each microarray Mk  was obtained by 
simulating this dynamics until the system relaxes to a steady state    &xi ≈ 0 . For each 
simulation, the rates of synthesis and degradation were varied by setting 

  
ai = λk ,iai  

and
  
bi = γ k ,ibi , where  ai  and  bi  are the original constant values of the parameters, and 

  
λk ,i ,γ k ,i  are random variables uniformly distributed in [0.0,2.0] . These parameters are 
generated once, independently for each gene in each synthetic microarray, and are then 
kept constant across the entire time-course. Note that λk ,i ~ 0.0  corresponds to a gene 

knock-out, while 
  
λk ,i ~ 2.0  corresponds to a 2-fold increase in the synthesis rate. This 

parameter randomization is intended to model the sampling of a population of distinct 
cellular phenotypes at random time points (but in equilibrium), as was done for the B cell 
experiments described later, where the efficiency of individual biochemical reactions 
may be different from assay to assay due to differences in temperature, nutrients, genetic 
mutations, etc. Interestingly, under such perturbations, the relationships between 
simulated genes across all experiments appears very similar to that of real experimental 
data obtained from the B cells (see supplemental). 
3.3.2 Performance metrics: As reverse engineering can be described as classifying each 
pair of nodes as having or not having an edge, the performance is typically assessed using 
the same measures as for classifiers: (a) true and false positives, NTP  and  N FP  – the 
number of inferred interactions that are present and not present in W, and (b) true and 
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false negatives, TNN and  N FN  – the number of potential edges correctly and incorrectly 
identified as not in W. Since genetic networks are believed to be sparse, the number of 
potential true negatives far exceeds potential true positives. Thus performance metrics 
traditionally used in ROC analysis, in particular specificity, NTN / NFP + NTN( ), are a bad 
match for the problem:  for all reasonable reconstructions the specificity is close to 1. 
Therefore, we choose to focus on other performance measures: precision and recall. 
Recall,   NTP / (NTP + NFN ) , indicates the fraction of true interactions correctly inferred by 
the algorithm, while precision, NTP / (NTP + N FP ) , measures the fraction of true 
interactions among all predicted. Precision also provides a meaningful metric as it 
provides an estimate of the probability that a predicted edge is real, and therefore 
corresponds to the expected success rate in the experimental validation of predicted 
interactions. 
In accord, we use Precision vs. Recall curves (PRCs) rather than the more conventional 
ROC curves. PRCs are generated by adjusting some parameter so that NTP  goes from 0 to 
the maximum number of true positives for a method. For ARACNE and RNs this 
parameter is the p-value or, equivalently, the mutual information threshold. For RNs, 
p0 = 1  keeps all interactions, leading to 100% recall but a very low precision. On the 

contrary, even at p0 = 1 , ARACNE’s DPI eliminates many interactions, leading to a 
much higher precision. For ARACNE the best recall is ~68% and ~53% at the minimum 
precision of ~71% and ~38% for Erdös-Rényi and scale-free topologies, respectively.  To 
reach the 100% recall, the DPI tolerance, τ , can be adjusted, until ARACNE’s PRC 
degenerates into that of RNs. For BNs, the adjustable parameter is the Dirichlet 
pseudocount, and, again, we observe that the maximum recall never reaches 100%. In 
fact, for either topology the highest recall value achieved by BNs (using a pseudocount of 
1,000) is ~44% with a precision of ~14%. Such precision would likely be too low to 
justify experimental validation of the results for a real biological network. 
3.3.3 Performance Evaluation: As shown in Figure 5, PRCs for ARACNE are 
consistently better than those for BNs and RNs. That is, for any reasonable precision (i.e. 
> 40%), ARACNE has a significantly higher recall for either topology than the other 
methods, and its precision reaches ~100% at significant recall values.  
The reason for ARACNE’s success can be seen by analyzing the distribution of MIs as a 
function of the length of the shortest path connecting each gene pair (degree of 
connectivity). ARACNE depends on MI being enriched for directly interacting genes and 
decreasing rapidly with this distance. Figure 6 shows this to be the case for our simulated 
datasets: MI is rapidly reduced as the degree of connectivity increases, until its 
distribution is indistinguishable from the background (Figure 6.b, inset). This highlights 
two important points. First, there is no unique choice for the MI threshold that separates 
directly and indirectly interacting genes. As a result, methods such as RNs that attempt to 
use a single threshold will either recover many indirect connections or miss a substantial 
number of directly interacting genes. This is obvious from the PRC for Relevance 
Networks. Second, mutual information decreases rapidly as signals travel over the 
network, raising the possibility of eliminating a substantial number of distant indirect 
associations by imposing a slightly conservative threshold that will eliminate only a few 
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true interactions, while connections with enriched mutual information due to indirectly 
interacting genes can be eliminated a-posteriori via the DPI. Moreover, because signals in 
this network decorrelate rather quickly the statistical properties of a tree-like structure 
will be locally preserved in the presence of loops that contain more than a few genes. 

Table 1 shows the number of true and false positives inferred by each algorithm for each 
network topology and varying synthetic microarray sizes. 

Erdös-Rényi networks: Using a sample size of 1,000 synthetic microarrays, ARACNE is 
able to recover, on average, 128 out of 194 true connections with only 1.3 false positives. 
As a comparison, RNs recover an average of 143 true connections with 462.7 false 
positives. Therefore, the DPI eliminates 461 false positives while reducing the number of 
true positives by only 15, yielding a DPI sensitivity of 99.71%, calculated as the percent 
of false positives eliminated, and a DPI precision of 96.8%, calculated as the percent of 
false positives removed out of the total number of edges removed. Bayesian Networks 
recover an average of 52.7 true connections with 35.3 false positives.  

ARACNE’s network reconstruction performance is stable as the number of samples 
decreases. In particular, the number of true positives recovered by ARACNE decays 
gracefully while the number of false positives remains very low. For a sample size of 125 
synthetic microarrays, ARACNE still recovers 81 true connections and 4.3 false 
connections, with a DPI sensitivity of 95.1% and a DPI precision of 96.1%. The 
performance of Bayesian Networks degrades rapidly as the number of samples decreases, 
because the conditional probability tables become very sparsely populated. For a 
synthetic microarray size of 125, BNs recover an average of 7.3 true connections with 
22.7 false connections. 
Scale-free networks: Using a sample size of 1,000 synthetic microarrays, ARACNE 
recovers an average of 97.7 true connections and 2.3 false connections, while RNs 
recover 113.3 true connections and 234 false connections, corresponding to a DPI 
sensitivity of 99% and a DPI precision of 93.67%. Bayesian Networks recover an average 
of 40 true connections with 18.7 false positives.  

When the sample size is reduced to 125 synthetic microarrays, ARACNE recovers 46.3 
true connections and 3.7 false connections, with a DPI sensitivity of 92.6% and a DPI 
precision of 96.5%. BNs’ performance again deteriorates rapidly at low sample sizes, 
inferring only 4.3 true connections with 7 false connections. 

In general, for all tested sample sizes and for both network configurations, Bayesian 
Networks recover far fewer true connections and far more false connections than 
ARACNE. The same is true for Relevance Networks, unless the precision is reduced to 
below ~35%. 

3.3.4 Parameter Estimation: The analysis described in this section for ARACNE and 
Relevance Networks was performed by fixing the estimator’s Gaussian kernel width to 
the value yielding the | |min I I−    for numerical simulations using an equivalent 
number of samples drawn from Gaussian distributions, as described in Section 2.1. As 
shown in Figure 7, this value does in fact largely optimize or nearly optimize the network 
recovery for ARACNE, as measured by the minimum total number of errors 
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( N FP + N FN ). Moreover, the network inference is very stable for a large interval of 
Gaussian kernel widths, verifying the intuition motivated in Section 2.1 that the MI rank 
error is far more robust to the choice of kernel widths than the MI estimation error. 
As shown in Figure 8, the DPI tolerance can be increased up to ~20% with limited impact 
on false positives, while larger tolerance values produce a much sharper increase. Hence, 
a moderate choice for the tolerance can help elucidate additional interactions without 
introducing an excessive number of false positives. This will be used to our advantage in 
the biological network reconstruction for human B cells. 
In summary, ARACNE appears (a) to achieve very high precision and substantial recall, 
(b) to be stable with respect to the choice of parameters h (Gaussian Kernel width) and 
I0  (statistical threshold), and (c) to achieve substantial recall and high precision even 
with very few data points (125). 
3.4 Human B Cells 
Removed pending journal publication. 

 

4 LIMITATIONS AND FUTURE WORK 
ARACNE drastically improves network inference due to its efficiency in filtering 
false-positives (see Table 1). However, two issues arise: potential loss of three-way and 
higher-order interactions, and the opening of three-gene loops. We address each issue 
separately and offer suggestions for future investigation. We note that the suggestions are 
compatible with the original formulation of Eq. (1) and correspond to expanding the 
potentials up to the third order, rather than stopping at the second order.  

4.1 Three-Way Interactions 

One extension of the current formulation would address the constraint that the statistical 
filtering will prune all three-way and higher order interactions between genes that cannot 
be expressed as pairwise interaction potentials. A biological example is that of two 
transcription factors, gA and gB, that independently activate gene gC, but form an inactive 
complex, gAB, that fails to activate transcription. This produces an activation pattern akin 
to an XOR Boolean table. It is well known that for such an interaction the mutual 
information between any gene-pair is zero; by truncating Eq. (1) at the pairwise 
interactions, ARACNE would declare these genes statistically independent. However, we 
note that such idealized situations are quite implausible. Biochemical reactions that 
produce higher order interactions usually create corresponding lower order dependencies 
as well. In fact, in (Nemenman 2004) a continuous variables example with just third order 
interactions could not be found. Thus if one is interested only in whether an interaction 
between a pair of genes is present and does not care for the type of the interaction [the 
usual approach of Markov networks (Pearl 1988)], then the truncation of the Hamiltonian 
is not likely to lead to serious systematic errors. We see this in both the galactose network 
and in the multiplicative Hill dynamics synthetic networks, both of which are 
reconstructed well by ARACNE in spite of the presence of higher order interactions. 
However, we emphasize that our formulation, in principle, can distinguish a much richer 
set of interactions, including those among pairs, triplets, and larger sets of variables, up to 
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!/[( )! !] 2NN N i i− =∑  different interactions. This is in contrast to alternative 
approaches, such as Bayesian or Markov networks, that represent statistical interactions 
as graphs and can only determine which of the N(N −1) /2  edges are present. While 
practical development of relevant algorithms is left for future publications, we expect that 
studying analogs of trees for higher order interactions (Kikuchi approximation and 
beyond in statistical physics) will allow us to design DPI-like inequalities capable of 
recovering such higher order interactions based on multiinformation (Nemenman and 
Tishby Submitted), the analog of mutual information for more than two variables. 
An alternative strategy to recover three-way interactions could employ a conditional 
mutual information: 

 ( ) ( ) ( ), | , |x y z x y z zI g g g I g g g z p g z dz= = =∫ . (8) 

For instance, the conditional MI between gB and gC, given gA, in a XOR network is 
( , | ) log2B C AI g g g = , which is different from zero and allows the interaction to be 

recovered. We continue the discussion of the conditional MI approach in the next section. 
4.2 Three-Gene Loops 
A second extension of the current formulation would avoid the present constraint that all 
three-gene loops will be opened along the weakest interaction (although some may be 
preserved when a non-zero DPI threshold is used at the expense of some additional false 
positives). Such an extension could attempt to exploit the fact that any edge gB ↔ gC that 
was correctly removed from the triplet (gB ↔...↔ gA ↔...↔ gC) by the DPI should have 
I(gB, gC | gA) = 0. Unfortunately, assessing that the conditional mutual information is zero 
requires a very large sample size because the MI between gB and gC must be estimated 
over a vanishingly small expression range of the conditional gene gA. Thus a better 
approach may be to search for a specific interval, ˜ A , of the expression values of gA for 
which the DPI is violated, i.e. ( )( , | ) ( , | )B C A A B C AI g g g A I g g g A⊂ > ⊂% % . If such an 
interval can be found, then the edge gB ↔ gC may need to be reintroduced. 

4.3 Edge Directionality 
A third extension would allow inference of directed edges. We note, however, that this 
problem is not effectively addressed even by algorithms that formally infer edge 
directions. For instance, Bayesian Networks inference on the synthetic networks assigned 
incorrect directionality to about half of the predicted edges. We intend to further study 
edge directionality using a two-tier approach in which first adirectional gene interactions 
are inferred, and then edge directionality is assessed via regression algorithms.  

4.4 Extensions to the Validation Framework 
We plan to extend the synthetic networks analysis described in this paper to investigate 
alternative models that account for more complex cis-regulatory dependencies between 
genes, as well as non-transcriptional dependencies. Additionally, we will explore the role 
of Langevin noise and detection noise on network reconstruction performance, and the 
simulation of specific synthetic gene knock-outs in combination with the parameter 
randomization approach. We also intend to test the network reconstruction degradation as 
a function of the percent of “hidden” synthetic genes, i.e., genes that are present in the 
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network but not available to the reverse-engineering analysis. This will allow us to better 
investigate the issues associated with our limited availability of monitored molecular 
species. Finally, in addition to the analysis performed on human B lymphocytes, we will 
apply ARACNE to the deconvolution of well characterized regulatory networks in S. 
cerevisiae. 

5 DISCUSSION 
Genetic regulatory networks can be described in terms of information flow carried by 
gene regulatory molecules. Due to inherent stochasticity in biochemical reactions 
information is lost as a signal propagates through a network. In this paper, we propose an 
information-theoretic methodology that exploits these characteristics and uses local 
statistics to infer the most likely path of information flow. We first introduce a formalism 
that can be used to represent any interaction network, not limited to pairwise interactions. 
We then proceed to justify a set of simplification rules that limit the interactions to those 
that can be reliably inferred from experimental data sets. Based on this representation we 
propose an algorithm, ARACNE, that can exactly infer tree-like networks, and we show, 
by validation against other methods on realistic-complexity synthetic networks, that 
ARACNE works extremely well even in the presence of many tight loop structures. This 
method extends upon traditional clustering based approaches and reconstructs more 
intricate dependencies within gene clusters. It also overcomes some critical limitations of 
optimization methods, such as Bayesian Networks, because it has low computational 
complexity, does not require discretization of the expression levels, and enables the 
reconstruction of larger loops. ARACNE can be applied to arbitrarily complex networks 
of transcriptional interactions without reliance on heuristic search procedures. Thus it is 
ideally suited for mammalian gene regulatory networks which (a) are characterized by a 
complex topology, (b) do not benefit from well-defined supplemental data (such as 
comprehensive protein interaction databases available for yeast), and (c) are more 
difficult to manipulate experimentally, substantially hindering the acquisition of data to 
which time-series based methods can be applied. 

We tested this method on a mammalian network by analyzing a large panel of microarray 
expression profiles from human B cells that span a substantial phenotypic variety. This 
approach differs from traditional methods that rely on systematic perturbations to simple 
organisms, which are not easily performed in mammalian cells. Using this data, 
ARACNE is able to construct a highly complex network with 129,000 interactions. 
Analysis of the network structure surrounding the c-MYC proto-oncogene reveals a 
significant enrichment in bona-fide c-MYC targets, and application of the DPI is shown 
to be effective in identifying direct targets of c-MYC by literature analysis and 
biochemical validation. 
We also thoroughly benchmarked ARACNE against other reverse-engineering algorithms 
(i.e., Bayesian Networks and Relevance Networks) using a realistically implemented 
synthetic simulated dataset designed to approximate the steady-state dynamic richness of 
expression profiles obtained by sampling different phenotypes. We examined two 
alternate topologies for these data: the Erdös-Rényi (or random network), which assumes 
no prior knowledge of the topological structure, and the scale-free topology, which 
approximates some more complex features of biological networks. The latter presents 
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greater challenges for reconstruction due to the presence of many small loops and 
multiple regulators that obscure direct dependencies between gene pairs. For example, a 
random network with ~2 connections per node produces an average loop size ~ 10N ≈ , 
so the network is locally a tree. On the other hand, small loops are common in the scale-
free network. As ARACNE is exact for trees, its performance on Erdös-Rényi networks 
is somewhat better than on the scale-free ones. Interestingly, Relevance Networks 
produce lower false-positive rates on the scale-free network. This is because indirect 
interactions are more likely to pass through a large interaction hub, which, due to their 
large in-degree, decorrelate signals much faster than poorly connected genes. This is 
evident by observing that the distribution of MIs for genes that are further than third 
neighbors in the scale-free networks already roughly approximates the background 
distribution (Figure 6.b, inset), whereas many genes separated by an equivalent path 
length in the Erdös-Rényi topology have statistically significant MI (Figure 6.a). Thus a 
much larger number of indirect connections can be eliminated in the scale-free networks 
by imposing a statistical significance threshold.  

An additional factor compounding the reconstruction of the synthetic scale-free networks 
might be due to a biologically implausible simplification of the synthetic model: the 
networks used here contain hubs with very large numbers of inbound connections (large 
in-degree), while biologically we expect a hub gene to regulate many other genes (large 
out-degree). High in-degree effectively masks pairwise interactions, decreasing the MI 
and causing degraded performance of ARACNE. Since larger sample sizes are necessary 
to accurately estimate MI for high in-degree nodes, the number of true positives inferred 
by both ARACNE and RNs decays more rapidly with decreasing sample sizes for the 
scale-free topology than the Erdös-Rényi topology. While these topological differences 
affect the estimation of pair-wise MI and with that the number of true positives, in spite 
of these confounding factors of the network topologies, and for all numbers of samples, 
the DPI is able to eliminate nearly all false interactions that were inferred by Relevance 
Networks at the expense of very few true interactions, indicating considerable robustness. 
However, as the p-value increases above reasonable values for a network of this size (i.e. 
~10-4), ARACNE begins retaining a large number of false candidate interactions without 
any additional increase in true positives, as is evident by the dramatic drop in precision 
for very high p-values (the right tail of ARACNE’s PRC). This is because the DPI may 
produce random results for very low MI values as small statistical fluctuations may 
change the rank ordering of mutual information. Therefore, a conservative threshold 
should be used that eliminates gene pairs with very low MI values, while the DPI can 
eliminate the vast majority of remaining indirect candidate interactions.  
Although the ARACNE is highly accurate in removing false interactions in the simulated 
dataset, application of the DPI is ill-suited to the inference of certain control structures; in 
particular, three-gene loops and three-way interactions, and improvements to the 
algorithm must be investigated to address these conditions. However, in its current 
instantiation ARACNE has been demonstrated to outperform accepted Bayesian Network 
and Relevance Network methods, and to be highly effective in eliminating false 
candidate interactions in a realistically implemented simulated dataset, as well as to 
identify putative transcription factor targets in human B cells. There are currently no 
other examples of a genome-wide mammalian network inferred from microarray 
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expression profiles. As a result, ARACNE shows significant promise in an area that has 
traditionally challenged reverse engineering algorithms. 
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Figure 1  

The mean absolute percent error in estimating mutual information for bivariate normal 
densities is compared to the percent of errors in ranking the relative mutual information 
values for randomly sampled pairs for which the distribution with the lower true MI value 
is within between 70% and 99% of the distribution with the higher value. MI estimation 
error (dashed blue line) is highly sensitive to the choice of Gaussian kernel width used by 
the estimator and grows rapidly for non-optimal parameter choices. However, due to 
similar bias for distributions with close MI values, the error in ranking pairs of 
distributions (solid brown line) is much less sensitive to the choice of this parameter. 
These averages were produced using samples from 1,000 bivariate normal densities with 
a random uniformly distributed correlation coefficient ρ ∈ [0.1,0.9] , such that 

I = 1
2 log 1 − ρ2( ). This results in a distribution of MI values that closely resembles that 

of the real microarray data (not shown). 
 

 

Figure 2 

Examples of the Data Processing Inequality.  

(a) 1g  , 3g , and 3g , are connected in a linear chain relationship. Although all six gene 
pairs will likely have enriched mutual information, the DPI will infer the most likely path 
of information flow. For example, 1 3g g↔ will be eliminated because 

1 2 1 3( , ) ( , ) I g g I g g> and 2 3 1 3( , ) ( , )I g g I g g> . 2 4g g↔  will be eliminated because 

2 3 2 4( , ) ( , )I g g I g g>  and 3 4 2 4( , ) ( , )I g g I g g> . 1 4g g↔  will be eliminated in two ways: 
first, because 1 2 1 4( , ) ( , )I g g I g g>  and 2 4 1 4( , ) ( , )I g g I g g> , and then because 

1 3 1 4( , ) ( , )I g g I g g>  and 3 4 1 4( , ) ( , )I g g I g g> . (b) If the underlying interactions form a 
tree (and MI can be measured without errors), ARACNE will reconstruct the network 
exactly by removing all false candidate interactions (dashed blue lines) and retaining all 
true interactions (solid black lines). 
 

 

Figure 3 
Reconstruction of the three-gene S. cerevisiae galactose regulatory network. (a) Eight 
distinct adirectional topologies must be evaluated by Bayesian Networks. One incorrect 
configuration (#1, black circles) has a higher score, and another (#6, gray circles) has the 
same score as the correct configuration (#4, light blue circles). (b) ARACNE evaluates 
mutual informations of three edges (shown near each edge) and correctly removes the 
edge between Gal4 and Gal80. Results were calculated using data from 52 Affymetrix 
GeneChips provided by (Hartemink, Gifford et al. 2001). 
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Figure 4 

Topology of the 100 gene regulatory networks proposed by (Mendes, Sha et al. 2003). 
Blue/red edges correspond to activation/inhibition. For the Erdös-Rényi topology (a) 
each gene is equally likely to be connected to every other gene, while the scale-free 
topology (b) is characterized by large interaction hubs with many connections. 

 
 

Figure 5 
Precision vs. Recall for 1,000 samples generated from the Mendes networks. (a) Erdös-
Rényi network topology. (b) Scale-free topology. PRCs for ARACNE are consistently 
better than for the other algorithms, and its precision reaches ~100% while maintaining 
high recall. 
 

 

Figure 6 
Distribution of mutual information for different lengths of the shortest path between 
genes for the (a) Erdös-Rényi topology and (b) scale-free topology. Here we plot the log 
of the empirical probability that MI for a given separation between genes is above some 
value (in nats) marked on the horizontal axis. For both topologies, high MI values are 
significantly more probable for closer genes. Statistical significance thresholds of 10-5 for 
the background MI distribution, corresponding to I0 = 0.0175  nats, is marked on each 
graph. As shown, this threshold retains a large number of indirect candidate interactions, 
and there is no threshold that would be able to separate indirect and direct interactions; a 
threshold that eliminates most of the former (red arrows) also eliminates the majority of 
the latter. This severely degrades performance of RNs. (b, inset) Expanded log-log view 
of the MI distribution for 934 gene pairs with 3 or more intermediaries and the 
background distribution computed by Monte Carlo. The curves are virtually 
indistinguishable, indicating that the background distribution can be used to obtain 
reliable estimates of statistical significance thresholds for filtering genes with higher 
degrees of connectivity. 
 

 
 

 
 

 



 26

 

Figure 7 

The total number of inferred errors (false positives plus false negatives) is stable with 
respect to choice of Gaussian kernel width for the estimator, validating the previous 
observation that errors in ranking MI for a pair of variables is more stable than the MI 
estimation error with respect to changes in this parameter (Figure 1). The choice of kernel 
width for each number of samples that minimizes the mean absolute MI estimation error 
for bivariate Gaussian densities (indicated with diamonds) yields optimal or near optimal 
reconstruction of this network for all samples sizes. Moreover, performance of the 
algorithm degrades gracefully as the number of samples decreases. Results are calculated 
for a statistical significance threshold of 10-5 and a synthetic microarray size of 1,000 for 
the scale-free network topology. Similar results apply for the Erdös-Rényi topology (see 
supplemental). 
 

 

Figure 8 

The number of inferred errors are plotted as a function of the DPI tolerance, τ . Raising 
τ  to a value of 0.2 results in a modest increase in false positives, while larger values of 
τ  produce a much sharper increase. Results are calculated for a statistical significance 
threshold of 10-5 and a synthetic microarray size of 1,000 for the scale-free topology. 
Similar results apply for the Erdös-Rényi topology (see supplemental). 
 

 

Figure 9 

Removed pending journal publication. 
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Table 1 
Recovery for varying numbers of samples generated from the Mendes networks, which 
contain an average of ~194 true interactions after self-loops and bidirectional edges are 
eliminated. Results are calculated using a p-value of 510−  for ARACNE and Relevance 
Networks, yielding < 0.5 expected false positives for 4,950 potential interactions, and 
using a Dirichlet prior with equivalent sample size of one for Bayesian Networks 
(Hartemink, Gifford et al. 2001). Results are averaged over three network configurations 
for each topology. For all sample sizes ARACNE efficiently eliminates almost all false 
candidate interactions inferred by RNs, as indicated by the DPI sensitivity (calculated as 
the percent of false positives eliminated by the DPI), with minimal reduction in true 
positives, as indicated by the DPI precision (calculated as the percent of false positives 
removed out of the total number of edges removed by the DPI). Moreover, as the sample 
size decreases, the number of true connections inferred by ARACNE decays gracefully 
while the number of false positives remains very low, whereas the performance of 
Bayesian Networks degrades rapidly for smaller sample sizes. 

 
 

Table 2 
Removed pending journal publication. 
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Figure 9 
Removed pending journal publication. 
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Table 1 
Erdös-Rényi Topology        

 ARACNE Relevance 
Networks 

Bayesian 
Networks 

Num samples  NTP   N FP  NTP  N FP  

DPI 
Sensitivity 

DPI 
Precision 

 NTP  N FP  

1000 128.00 1.33 143.33 462.67 99.71% 96.78% 52.67 35.33

750 124.33 2.67 139.33 411.00 99.35% 96.46% 49.67 33.33
500 119.00 1.67 130.67 311.33 99.46% 96.37% 45.00 33.00

250 101.00 4.67 110.00 182.33 97.44% 95.18% 33.67 26.67

125 81.00 4.67 84.67 95.00 95.09% 96.10% 7.33 22.67

 
Scale-Free Topology        

 ARACNE Relevance 
Networks 

Bayesian 
Networks 

Num samples TPN  FPN  TPN  FPN  

DPI 
Sensitivity 

DPI 
Precision 

TPN  FPN  

1000 97.67 2.33 113.33 234.00 99.00% 93.67% 40.00 18.67

750 90.67 3.33 103.00 200.00 98.33% 94.10% 34.33 17.00

500 80.33 5.33 91.67 154.67 96.55% 92.95% 29.67 15.67

250 63.33 7.67 70.00 80.00 90.42% 91.56% 11.67 11.67

125 46.33 3.67 48.00 49.67 92.62% 96.50% 4.33 7.00

 
 

 

Table 2 
Removed pending journal publication. 

 


